Music Recommendation System and Recommendation Model Based on Convolutional Neural Network

计算机科学 推荐系统 卷积神经网络 相似性(几何) 人工智能 特征(语言学) 机器学习 过程(计算) 数据挖掘 情报检索 语言学 操作系统 图像(数学) 哲学
作者
Yezi Zhang
出处
期刊:Mobile Information Systems [Hindawi Limited]
卷期号:2022: 1-14 被引量:13
标识
DOI:10.1155/2022/3387598
摘要

In today’s era of big data with excess information, music is common and everyday, which shows the huge amount of music data. How to obtain one’s favorite music from the massive music database has become a problem, and the emergence of music recommendation systems is also inevitable. In this paper, we take digital piano music as the research object, form comprehensive features using spectrum and notes, design classification methods using convolutional neural networks, and further process the classification results and design recommendation algorithms. The basic method of music recommendation of this algorithm is to determine the structure of the network model, determine the corresponding training model, and improve the parameters on the basis of the typical source network model used in the system experiment. Historical behavior chooses to collect information. Then, it reads the audio data on the system and retrieves it from Mel, which reveals the identity of the music. The classification proposal achieves its goal by denying the similarity between customer preferences and the potential of two musical characteristics. Two recommended methods based on convolutional neural networks are tested in this article. On the whole, the accuracy of the user’s comprehensive feature, recommendation method is higher than the recommendation accuracy rate of the multicategory user. In the comparison experiment of the single-category and multicategory recommendation methods, the average accuracy rate of single-category user feature recommendation is 50.35%; and the recommendation accuracy rate of multicategory user features is higher than the recommendation accuracy rate of single-category user features. The experimental results show that the two recommendation methods can achieve better recommendation results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助xingziyu采纳,获得10
刚刚
干净之槐完成签到,获得积分10
刚刚
organicboy发布了新的文献求助10
1秒前
Jasper应助jj采纳,获得10
2秒前
充电宝应助梁子奥里给采纳,获得10
3秒前
gg发布了新的文献求助10
3秒前
一一一完成签到 ,获得积分10
4秒前
自然1111发布了新的文献求助10
4秒前
zsh发布了新的文献求助10
5秒前
8秒前
ycc完成签到,获得积分10
10秒前
晨晨学长完成签到,获得积分10
10秒前
科研通AI5应助xhxh5946采纳,获得30
11秒前
坟里唱情歌完成签到 ,获得积分10
11秒前
野性的小懒虫完成签到 ,获得积分10
11秒前
王小志发布了新的文献求助10
14秒前
小大大小小应助现代安莲采纳,获得10
16秒前
17秒前
18秒前
19秒前
丘比特应助JIANG采纳,获得10
20秒前
WZQ发布了新的文献求助10
21秒前
ziming313发布了新的文献求助10
22秒前
xingziyu完成签到,获得积分10
23秒前
王小志完成签到,获得积分10
23秒前
xingziyu发布了新的文献求助10
25秒前
11111应助Cyber_relic采纳,获得10
26秒前
锤死别人的锤完成签到,获得积分20
27秒前
28秒前
28秒前
SciGPT应助科研通管家采纳,获得10
28秒前
桐桐应助科研通管家采纳,获得10
28秒前
Hello应助科研通管家采纳,获得30
28秒前
28秒前
28秒前
顾矜应助科研通管家采纳,获得10
28秒前
小林太郎应助科研通管家采纳,获得30
28秒前
今后应助科研通管家采纳,获得10
29秒前
29秒前
Orange应助科研通管家采纳,获得10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542875
求助须知:如何正确求助?哪些是违规求助? 3120166
关于积分的说明 9341799
捐赠科研通 2818206
什么是DOI,文献DOI怎么找? 1549434
邀请新用户注册赠送积分活动 722146
科研通“疑难数据库(出版商)”最低求助积分说明 712978