Using Natural Language Processing to Read Plans

计算机科学 工具箱 规划师 人工智能 数据科学 弹性(材料科学) 主题模型 自然语言处理 钥匙(锁) 机器学习 计算机安全 热力学 物理 程序设计语言
作者
Xinyu Fu,Chaosu Li,Wei Zhai
出处
期刊:Journal of The American Planning Association [Informa]
卷期号:89 (1): 107-119 被引量:8
标识
DOI:10.1080/01944363.2022.2038659
摘要

Problem, research strategy, and findings Planners need to read plans to learn and adapt current practice. Planners may struggle to find time to read and study lengthy planning documents, especially in emerging areas such as climate change and urban resilience. Recently, natural language processing (NLP) has shown promise in processing big textual data. We asked whether planners could use NLP techniques to more efficiently extract useful and reliable information from planning documents. By analyzing 78 resilience plans from the 100 Resilient Cities Network, we found that results generated from topic modeling, which is an NLP technique, coincided to a large extent (80%) with those from the conventional content analysis approach. Topic modeling was generally effective and efficient in extracting the main information of plans, whereas the content analysis approach could find more in-depth details but at the expense of considerable time and effort. We further propose a transferrable model for cutting-edge planners to more efficiently read and study a large collection of plans using machine learning. Our methodology has limitations: Both topic modeling and content analysis can be subject to human bias and generate unreliable results; NLP text processing techniques may create inaccurate results due to their specific method limitations; and the transferable approach can be only applied to big textual data where there are enough sufficiently long documents.Takeaway for practice NLP represents a valuable addition to the planner's toolbox. Topic modeling coupled with other NLP techniques can help planners to effectively discover key topics in plans, identify planning priorities and plans of specific emphasis, and find relevant policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
boymin2015发布了新的文献求助10
1秒前
anyunyi发布了新的文献求助10
1秒前
jpc发布了新的文献求助20
4秒前
球球发布了新的文献求助10
5秒前
小芙爱雪碧完成签到 ,获得积分10
5秒前
复杂访冬完成签到,获得积分10
6秒前
调研昵称发布了新的文献求助10
6秒前
可爱的函函应助小李采纳,获得10
8秒前
赘婿应助zzzzz采纳,获得10
10秒前
anyunyi发布了新的文献求助10
11秒前
weiyu发布了新的文献求助10
11秒前
李爱国应助小陈采纳,获得10
13秒前
聚乙二醇完成签到,获得积分10
14秒前
超级无敌暴龙战士完成签到,获得积分10
17秒前
Hello应助wuming7890采纳,获得10
17秒前
paleo-地质完成签到,获得积分10
19秒前
Jasper应助第一百零一个采纳,获得10
19秒前
19秒前
隐形曼青应助weiyu采纳,获得30
21秒前
传奇3应助aries采纳,获得10
21秒前
22秒前
22秒前
Chuan完成签到,获得积分20
23秒前
树袋熊完成签到,获得积分10
25秒前
anyunyi发布了新的文献求助10
25秒前
酷波er应助REBACK采纳,获得10
26秒前
文艺鞋垫发布了新的文献求助10
27秒前
27秒前
伊星儿发布了新的文献求助10
27秒前
30秒前
30秒前
我是老大应助科研通管家采纳,获得30
31秒前
小马甲应助科研通管家采纳,获得10
32秒前
明理的踏歌完成签到,获得积分10
32秒前
搜集达人应助科研通管家采纳,获得10
32秒前
32秒前
搜集达人应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
sissiarno应助科研通管家采纳,获得100
32秒前
充电宝应助科研通管家采纳,获得10
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465532
求助须知:如何正确求助?哪些是违规求助? 3058673
关于积分的说明 9062588
捐赠科研通 2749045
什么是DOI,文献DOI怎么找? 1508272
科研通“疑难数据库(出版商)”最低求助积分说明 696885
邀请新用户注册赠送积分活动 696535