化学
二面角
分子内力
激发态
质子
聚合物
扭转(腹足类)
共价键
烯醇
蓝移
光化学
氢键
立体化学
分子
有机化学
材料科学
光致发光
医学
物理
外科
光电子学
量子力学
核物理学
催化作用
作者
Huan Hu,Xin Cheng,Zhimin Ma,Rint P. Sijbesma,Zhiyong Ma
摘要
Real-time monitoring of strain/stress in polymers is a big challenge to date. Herein, we for the first time report an ESIPT (excited-state intramolecular proton transfer)-based mechanochromic mechanophore (MM). The synthesis of target MM PhMz-4OH [(2-hydroxyphenyl)benzimidazole with four aliphatic hydroxyls] is quite facile. PhMz-4OH possesses characteristic dual emissions, and its ESIPT activity is greatly affected by steric hindrance. Then, PhMz-4OH was covalently linked into polyurethane chains (PhMz-4OH@PU). Upon stretching, the PhMz-4OH@PU films showed fluorescence color change and spectral variation with the increase in enol emission and blueshift of keto emission due to the force-induced torsion of the dihedral angle between the proton donor and the proton acceptor. The PhMz-4OH@PU films with high mechanophore concentrations (>0.36 mol %) might undergo a two-stage force-responsive process, including torsion of the dihedral angle via force-induced disaggregation and direct chain-transduced force-induced torsion of the dihedral angle. The intensity ratio of enol emission to keto emission (IE/IK) shows a quantitative correlation with elongation, and real-time strain sensing is achieved. PhMz-4OH is a successful type II MM (without covalent bond scission) and displays high sensitivity and excellent reversibility to stress. Two control structures PhMz-NH2 and PhMz-2OH were also embedded into PU but no spectral or color changes were detected, further confirming that mechanochromism of PhMz-4OH@PU films arises from the chain-transduced force. Density function theory (DFT) calculation was performed to study the force-tuned ESIPT process theoretically and rationalize the experimental results. This study might lay the foundation for real-time stress/strain sensing in practical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI