已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An improved Harris Hawks Optimization algorithm for continuous and discrete optimization problems

算法 计算机科学 威尔科克森符号秩检验 趋同(经济学) 箱子 数学优化 优化算法 数学 统计 曼惠特尼U检验 经济增长 经济
作者
Harun Gezici,Haydar Livatyalı
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:113: 104952-104952 被引量:13
标识
DOI:10.1016/j.engappai.2022.104952
摘要

Harris Hawks Optimization (HHO) is a population-based meta-heuristic optimization algorithm that has been used for the solution of test functions and real-world problems by many researchers. However, HHO has a premature convergence problem. The main motive of the novel approach in this paper is that the performance of an MHA could be improved by simplification and by modifying the way random parameters are determined. The proposed algorithm aims to solve both continuous and discrete optimization problems. HHO is improved in three stages. First, the method to determine the random parameters is modified. Second, the strategy of HHO to produce a new solution is updated. Third, the six-step decision mechanism of HHO is shortened to four. The proposed algorithm is compared to five recently published competitor algorithms by applying to the CEC2019 test functions and a three-dimensional bin packing problem (3D-BPP) dataset with 320 samples. All the algorithms are run on the same computer and the results of 30 independent studies are saved. Minimum, average, and standard deviation values and solution times of CEC2019 functions are used as comparison parameters. For the 3D-BPP, the number of bins and the solution time are used as comparison parameters for in the Wilcoxon test. The proposed algorithm performs better than the selected competitors in terms of its %5 significance level. Moreover, the algorithm proposed in the 3D-BPP data set is the most successful algorithm with its 9745 bins. Besides, the proposed algorithm is also compared to the four most popular algorithms in the literature. The results obtained confirm the validity of the proposed algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是温柔本身完成签到,获得积分20
刚刚
yanyuqing发布了新的文献求助10
1秒前
bkagyin应助又得起名了采纳,获得10
1秒前
000发布了新的文献求助10
1秒前
天天快乐应助语嘘嘘采纳,获得10
2秒前
wang完成签到,获得积分10
3秒前
谨慎的擎宇完成签到,获得积分20
5秒前
NI完成签到 ,获得积分10
5秒前
打打应助yanyuqing采纳,获得10
6秒前
董小婷完成签到 ,获得积分10
9秒前
LBM关闭了LBM文献求助
10秒前
LBM关闭了LBM文献求助
10秒前
10秒前
tangxiaohui完成签到 ,获得积分10
11秒前
11秒前
11秒前
天才小能喵完成签到 ,获得积分0
11秒前
酷波er应助瘦瘦的涵山采纳,获得10
11秒前
自觉曲奇完成签到 ,获得积分10
12秒前
不再褪色完成签到,获得积分10
13秒前
McUltrman发布了新的文献求助10
13秒前
14秒前
yuntong发布了新的文献求助30
14秒前
蓝色牛马发布了新的文献求助10
15秒前
16秒前
lmh发布了新的文献求助30
17秒前
Rui发布了新的文献求助10
18秒前
CodeCraft应助刘明苏采纳,获得10
18秒前
hua完成签到,获得积分10
19秒前
20秒前
Cwx2020完成签到,获得积分10
20秒前
英俊的铭应助yuhan采纳,获得10
20秒前
语嘘嘘完成签到,获得积分10
20秒前
21秒前
McUltrman完成签到,获得积分10
21秒前
,。完成签到,获得积分10
22秒前
ltq发布了新的文献求助10
22秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
PCX发布了新的文献求助20
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713824
求助须知:如何正确求助?哪些是违规求助? 5218287
关于积分的说明 15272000
捐赠科研通 4865463
什么是DOI,文献DOI怎么找? 2612154
邀请新用户注册赠送积分活动 1562352
关于科研通互助平台的介绍 1519480