An improved Harris Hawks Optimization algorithm for continuous and discrete optimization problems

算法 计算机科学 威尔科克森符号秩检验 趋同(经济学) 箱子 数学优化 优化算法 数学 统计 曼惠特尼U检验 经济增长 经济
作者
Harun Gezici,Haydar Livatyalı
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:113: 104952-104952 被引量:13
标识
DOI:10.1016/j.engappai.2022.104952
摘要

Harris Hawks Optimization (HHO) is a population-based meta-heuristic optimization algorithm that has been used for the solution of test functions and real-world problems by many researchers. However, HHO has a premature convergence problem. The main motive of the novel approach in this paper is that the performance of an MHA could be improved by simplification and by modifying the way random parameters are determined. The proposed algorithm aims to solve both continuous and discrete optimization problems. HHO is improved in three stages. First, the method to determine the random parameters is modified. Second, the strategy of HHO to produce a new solution is updated. Third, the six-step decision mechanism of HHO is shortened to four. The proposed algorithm is compared to five recently published competitor algorithms by applying to the CEC2019 test functions and a three-dimensional bin packing problem (3D-BPP) dataset with 320 samples. All the algorithms are run on the same computer and the results of 30 independent studies are saved. Minimum, average, and standard deviation values and solution times of CEC2019 functions are used as comparison parameters. For the 3D-BPP, the number of bins and the solution time are used as comparison parameters for in the Wilcoxon test. The proposed algorithm performs better than the selected competitors in terms of its %5 significance level. Moreover, the algorithm proposed in the 3D-BPP data set is the most successful algorithm with its 9745 bins. Besides, the proposed algorithm is also compared to the four most popular algorithms in the literature. The results obtained confirm the validity of the proposed algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿咻嘿咻发布了新的文献求助10
1秒前
1秒前
1秒前
Kiwi发布了新的文献求助10
1秒前
头顶有座金山完成签到,获得积分10
2秒前
3秒前
隐形秋柔发布了新的文献求助10
4秒前
江峰发布了新的文献求助10
4秒前
orixero应助Na采纳,获得10
6秒前
6秒前
6秒前
Criminology34应助拾玖采纳,获得10
6秒前
彭于晏应助guoguo采纳,获得10
6秒前
7秒前
7秒前
乐乐应助TNU采纳,获得10
8秒前
清脆糖豆发布了新的文献求助10
8秒前
老福贵儿应助悬铃木采纳,获得10
10秒前
11秒前
丘比特应助隐形秋柔采纳,获得10
11秒前
开朗以珊完成签到,获得积分10
12秒前
LYP发布了新的文献求助10
12秒前
尤静柏完成签到,获得积分10
12秒前
12秒前
WF完成签到,获得积分10
12秒前
Meteor发布了新的文献求助10
12秒前
Thi发布了新的文献求助10
13秒前
jason完成签到 ,获得积分10
14秒前
15秒前
阿八八八完成签到,获得积分10
16秒前
17秒前
李健应助科研通管家采纳,获得10
17秒前
科目三应助夕荀采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
科研通AI6应助fff采纳,获得10
17秒前
风清扬应助科研通管家采纳,获得30
17秒前
科研通AI6应助fff采纳,获得30
17秒前
r1915应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589147
求助须知:如何正确求助?哪些是违规求助? 4672942
关于积分的说明 14790572
捐赠科研通 4627592
什么是DOI,文献DOI怎么找? 2532071
邀请新用户注册赠送积分活动 1500734
关于科研通互助平台的介绍 1468396