An improved Harris Hawks Optimization algorithm for continuous and discrete optimization problems

算法 计算机科学 威尔科克森符号秩检验 趋同(经济学) 箱子 数学优化 优化算法 数学 统计 曼惠特尼U检验 经济 经济增长
作者
Harun Gezici,Haydar Livatyalı
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:113: 104952-104952 被引量:13
标识
DOI:10.1016/j.engappai.2022.104952
摘要

Harris Hawks Optimization (HHO) is a population-based meta-heuristic optimization algorithm that has been used for the solution of test functions and real-world problems by many researchers. However, HHO has a premature convergence problem. The main motive of the novel approach in this paper is that the performance of an MHA could be improved by simplification and by modifying the way random parameters are determined. The proposed algorithm aims to solve both continuous and discrete optimization problems. HHO is improved in three stages. First, the method to determine the random parameters is modified. Second, the strategy of HHO to produce a new solution is updated. Third, the six-step decision mechanism of HHO is shortened to four. The proposed algorithm is compared to five recently published competitor algorithms by applying to the CEC2019 test functions and a three-dimensional bin packing problem (3D-BPP) dataset with 320 samples. All the algorithms are run on the same computer and the results of 30 independent studies are saved. Minimum, average, and standard deviation values and solution times of CEC2019 functions are used as comparison parameters. For the 3D-BPP, the number of bins and the solution time are used as comparison parameters for in the Wilcoxon test. The proposed algorithm performs better than the selected competitors in terms of its %5 significance level. Moreover, the algorithm proposed in the 3D-BPP data set is the most successful algorithm with its 9745 bins. Besides, the proposed algorithm is also compared to the four most popular algorithms in the literature. The results obtained confirm the validity of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanci应助晶生采纳,获得10
刚刚
1秒前
邢夏之发布了新的文献求助10
3秒前
yznfly完成签到,获得积分0
4秒前
11完成签到,获得积分20
5秒前
jay完成签到 ,获得积分10
6秒前
yzz发布了新的文献求助20
6秒前
Jeffery426完成签到,获得积分10
6秒前
大模型应助twob采纳,获得10
7秒前
共享精神应助知识探索家采纳,获得10
8秒前
13秒前
fffzy完成签到,获得积分10
14秒前
15秒前
11关注了科研通微信公众号
15秒前
yzz完成签到,获得积分20
15秒前
savica完成签到,获得积分10
17秒前
葛稀完成签到,获得积分10
18秒前
基金中中中完成签到,获得积分10
18秒前
mc应助王旺碎冰冰采纳,获得10
18秒前
18秒前
20秒前
下雨的颜色完成签到,获得积分10
20秒前
21秒前
我爱吃水果完成签到,获得积分10
21秒前
晶生完成签到,获得积分10
22秒前
桐桐应助早点睡采纳,获得10
23秒前
Hello应助cai采纳,获得10
23秒前
water应助晚霞常有遗憾采纳,获得10
23秒前
张春月完成签到,获得积分10
24秒前
Ccccn完成签到 ,获得积分10
24秒前
domkps完成签到 ,获得积分10
24秒前
小俞发布了新的文献求助10
25秒前
zyx完成签到,获得积分10
26秒前
aaa关闭了aaa文献求助
26秒前
wanci应助我爱吃水果采纳,获得10
26秒前
26秒前
鳗鱼紫萱完成签到,获得积分10
27秒前
秋秋完成签到 ,获得积分10
27秒前
123完成签到,获得积分10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965864
求助须知:如何正确求助?哪些是违规求助? 3511176
关于积分的说明 11156785
捐赠科研通 3245809
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278