An improved Harris Hawks Optimization algorithm for continuous and discrete optimization problems

算法 计算机科学 威尔科克森符号秩检验 趋同(经济学) 箱子 数学优化 优化算法 数学 统计 曼惠特尼U检验 经济增长 经济
作者
Harun Gezici,Haydar Livatyalı
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:113: 104952-104952 被引量:13
标识
DOI:10.1016/j.engappai.2022.104952
摘要

Harris Hawks Optimization (HHO) is a population-based meta-heuristic optimization algorithm that has been used for the solution of test functions and real-world problems by many researchers. However, HHO has a premature convergence problem. The main motive of the novel approach in this paper is that the performance of an MHA could be improved by simplification and by modifying the way random parameters are determined. The proposed algorithm aims to solve both continuous and discrete optimization problems. HHO is improved in three stages. First, the method to determine the random parameters is modified. Second, the strategy of HHO to produce a new solution is updated. Third, the six-step decision mechanism of HHO is shortened to four. The proposed algorithm is compared to five recently published competitor algorithms by applying to the CEC2019 test functions and a three-dimensional bin packing problem (3D-BPP) dataset with 320 samples. All the algorithms are run on the same computer and the results of 30 independent studies are saved. Minimum, average, and standard deviation values and solution times of CEC2019 functions are used as comparison parameters. For the 3D-BPP, the number of bins and the solution time are used as comparison parameters for in the Wilcoxon test. The proposed algorithm performs better than the selected competitors in terms of its %5 significance level. Moreover, the algorithm proposed in the 3D-BPP data set is the most successful algorithm with its 9745 bins. Besides, the proposed algorithm is also compared to the four most popular algorithms in the literature. The results obtained confirm the validity of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时尚的飞机完成签到,获得积分10
1秒前
2秒前
xxz发布了新的文献求助10
2秒前
3秒前
3秒前
Ava应助曲淳采纳,获得10
3秒前
3秒前
seu000完成签到,获得积分10
4秒前
hj1234发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
慕青应助Ogai采纳,获得10
7秒前
7秒前
7秒前
8秒前
Orange应助Satan采纳,获得10
8秒前
丘比特应助1111采纳,获得10
8秒前
Li发布了新的文献求助10
9秒前
赖雅绿完成签到,获得积分10
9秒前
xxz完成签到,获得积分10
10秒前
是人我吃发布了新的文献求助10
10秒前
10秒前
Hello paper发布了新的文献求助10
10秒前
天空之城发布了新的文献求助30
11秒前
11秒前
星辰大海应助虞丹萱采纳,获得10
11秒前
11秒前
忧虑的夜天完成签到,获得积分20
11秒前
wyh完成签到,获得积分10
12秒前
安静友灵发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
CipherSage应助老坛采纳,获得10
13秒前
罗氏集团发布了新的文献求助10
13秒前
优娜发布了新的文献求助30
14秒前
平淡小凝发布了新的文献求助10
14秒前
ppppp发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287058
求助须知:如何正确求助?哪些是违规求助? 4439572
关于积分的说明 13822123
捐赠科研通 4321561
什么是DOI,文献DOI怎么找? 2372031
邀请新用户注册赠送积分活动 1367525
关于科研通互助平台的介绍 1331007