An improved Harris Hawks Optimization algorithm for continuous and discrete optimization problems

算法 计算机科学 威尔科克森符号秩检验 趋同(经济学) 箱子 数学优化 优化算法 数学 统计 曼惠特尼U检验 经济 经济增长
作者
Harun Gezici,Haydar Livatyalı
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:113: 104952-104952 被引量:13
标识
DOI:10.1016/j.engappai.2022.104952
摘要

Harris Hawks Optimization (HHO) is a population-based meta-heuristic optimization algorithm that has been used for the solution of test functions and real-world problems by many researchers. However, HHO has a premature convergence problem. The main motive of the novel approach in this paper is that the performance of an MHA could be improved by simplification and by modifying the way random parameters are determined. The proposed algorithm aims to solve both continuous and discrete optimization problems. HHO is improved in three stages. First, the method to determine the random parameters is modified. Second, the strategy of HHO to produce a new solution is updated. Third, the six-step decision mechanism of HHO is shortened to four. The proposed algorithm is compared to five recently published competitor algorithms by applying to the CEC2019 test functions and a three-dimensional bin packing problem (3D-BPP) dataset with 320 samples. All the algorithms are run on the same computer and the results of 30 independent studies are saved. Minimum, average, and standard deviation values and solution times of CEC2019 functions are used as comparison parameters. For the 3D-BPP, the number of bins and the solution time are used as comparison parameters for in the Wilcoxon test. The proposed algorithm performs better than the selected competitors in terms of its %5 significance level. Moreover, the algorithm proposed in the 3D-BPP data set is the most successful algorithm with its 9745 bins. Besides, the proposed algorithm is also compared to the four most popular algorithms in the literature. The results obtained confirm the validity of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
8秒前
上官若男应助wwwwwnnnnn采纳,获得10
8秒前
9秒前
11秒前
11秒前
14秒前
YY发布了新的文献求助10
14秒前
于芋菊举报bkppforever求助涉嫌违规
15秒前
北城完成签到,获得积分10
15秒前
明理小土豆完成签到,获得积分10
15秒前
15秒前
wtg完成签到,获得积分20
17秒前
哈拉少发布了新的文献求助10
18秒前
周新运发布了新的文献求助10
19秒前
tina3058完成签到,获得积分10
20秒前
23秒前
可爱的函函应助queen814采纳,获得30
23秒前
炎魔之王拉格纳罗斯完成签到,获得积分10
24秒前
25秒前
饱满的尔珍完成签到 ,获得积分10
25秒前
冬雪完成签到 ,获得积分10
31秒前
郑盼秋完成签到,获得积分10
33秒前
yyy完成签到,获得积分10
33秒前
35秒前
传奇3应助michaelzy1127采纳,获得20
35秒前
北城发布了新的文献求助10
36秒前
leecarp完成签到,获得积分10
38秒前
狂野世立完成签到,获得积分10
43秒前
霹雳娇娃完成签到,获得积分10
44秒前
46秒前
大个应助Yolanda采纳,获得10
47秒前
大龙哥886应助一二采纳,获得10
50秒前
51秒前
我是老大应助zf采纳,获得10
51秒前
52秒前
云华完成签到,获得积分10
54秒前
54秒前
bkagyin应助小秀采纳,获得10
55秒前
朴素小霜完成签到 ,获得积分10
56秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155762
求助须知:如何正确求助?哪些是违规求助? 2807008
关于积分的说明 7871439
捐赠科研通 2465303
什么是DOI,文献DOI怎么找? 1312209
科研通“疑难数据库(出版商)”最低求助积分说明 629947
版权声明 601905