Spatially adaptive blind deconvolution methods for optical coherence tomography

去模糊 反褶积 盲反褶积 点扩散函数 Tikhonov正则化 自动对焦 图像复原 正规化(语言学) 计算机科学 光学相干层析成像 算法 小波 人工智能 全变差去噪 计算机视觉 数学 图像处理 反问题 光学(聚焦) 光学 图像(数学) 物理 数学分析
作者
Wenxue Dong,Yina Du,Jianbin Xu,Feng Dong,Shangjie Ren
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:147: 105650-105650 被引量:1
标识
DOI:10.1016/j.compbiomed.2022.105650
摘要

Optical coherence tomography (OCT) is a powerful noninvasive imaging technique for detecting microvascular abnormalities. Following optical imaging principles, an OCT image will be blurred in the out-of-focus domain. Digital deconvolution is a commonly used method for image deblurring. However, the accuracy of traditional digital deconvolution methods, e.g., the Richardson-Lucy method, depends on the prior knowledge of the point spread function (PSF), which varies with the imaging depth and is difficult to determine. In this paper, a spatially adaptive blind deconvolution framework is proposed for recovering clear OCT images from blurred images without a known PSF. First, a depth-dependent PSF is derived from the Gaussian beam model. Second, the blind deconvolution problem is formalized as a regularized energy minimization problem using the least squares method. Third, the clear image and imaging depth are simultaneously recovered from blurry images using an alternating optimization method. To improve the computational efficiency of the proposed method, an accelerated alternating optimization method is proposed based on the convolution theorem and Fourier transform. The proposed method is numerically implemented with various regularization terms, including total variation, Tikhonov, and l1 norm terms. The proposed method is used to deblur synthetic and experimental OCT images. The influence of the regularization term on the deblurring performance is discussed. The results show that the proposed method can accurately deblur OCT images. The proposed acceleration method can significantly improve the computational efficiency of blind demodulation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
英姑应助蛋壳柯采纳,获得10
3秒前
领导范儿应助Nugget采纳,获得10
4秒前
科研通AI2S应助芊慧采纳,获得10
5秒前
清逸发布了新的文献求助10
7秒前
7秒前
小熊炸毛发布了新的文献求助10
8秒前
8秒前
华仔应助AzA采纳,获得10
8秒前
10秒前
10秒前
10秒前
大佬发布了新的文献求助10
11秒前
领导范儿应助狒狒爱学习采纳,获得10
13秒前
liuyx发布了新的文献求助10
13秒前
Abdurrahman发布了新的文献求助10
13秒前
Orange应助毕蓝血采纳,获得10
13秒前
wbhou发布了新的文献求助10
13秒前
13秒前
14秒前
研友_VZG7GZ应助carpediem采纳,获得10
15秒前
顾矜应助静默向上采纳,获得10
16秒前
16秒前
orixero应助云淡风轻采纳,获得10
16秒前
18秒前
脑洞疼应助S2采纳,获得10
19秒前
奔山而行发布了新的文献求助30
19秒前
Nugget发布了新的文献求助10
20秒前
Ali关闭了Ali文献求助
21秒前
毕蓝血发布了新的文献求助10
21秒前
Or1ll完成签到,获得积分10
22秒前
orixero应助斯文火龙果采纳,获得10
23秒前
24秒前
liubeibei完成签到,获得积分10
27秒前
30秒前
30秒前
l9完成签到 ,获得积分10
32秒前
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316718
求助须知:如何正确求助?哪些是违规求助? 2948488
关于积分的说明 8540905
捐赠科研通 2624376
什么是DOI,文献DOI怎么找? 1436143
科研通“疑难数据库(出版商)”最低求助积分说明 665796
邀请新用户注册赠送积分活动 651724