Introduction of mutant TP53 related genes in metabolic pathways and evaluation their correlation with immune cells, drug resistance and sensitivity

基因 突变体 生物 抗药性 癌变 突变 遗传学 代谢途径 癌症 癌症研究
作者
Ali Valipour Motlagh,Mohammad Mahdevar,Sepideh Mirzaei,Maliheh Entezari,Mehrdad Hashemi,Kiavash Hushmandi,Maryam Peymani
出处
期刊:Life Sciences [Elsevier]
卷期号:303: 120650-120650 被引量:10
标识
DOI:10.1016/j.lfs.2022.120650
摘要

Although the relationship between TP53 mutation, TP53 metabolism pathways, and tumorigenesis has been investigated, pan-cancer analysis of TP53 mutations and related metabolism pathways is not completely available in common types of human cancers. Thus, this study was going to represent TP53 mutant-related metabolism genes and pathways in a pan-cancer study and investigate the relationship between selected genes and drug resistance.The DNA-seq data, RNA-seq data, and clinical information of 12 types of cancer were downloaded from the cancer genome atlas (TCGA) database. GSE70479 data were obtained from GEO database for validation of our TCGA data. To evaluate the survival rate of patients, GEPIA2 was applied. The CCLE and GDSC database were used to investigate drug resistance and sensitivity.Our findings indicated that TTN, MUC16, and TP53 were present in 12 types of cancer with high level of mutation frequency which abundance of TP53 mutations was higher. Mutant TP53-related (mTP53) pathways and genes including PKM, SLC16A3, HK2, PFKP, PHGDH, and CTSC were obtained from enrichment analysis and interestingly, top pathways were associated with metabolism including glycolysis and mTORC1 pathway. Our results showed the expression of some candidate genes correlated with immune markers, prognosis, and drug resistance.Top mutant genes for 12 cancers were highlighted while TP53 was selected as top mutant gene, and metabolic genes associated with the TP53 mutation were identified that some of which are important in poor prognosis. In doing so, mutations in TP53 could run some metabolic pathways and drug resistance and sensitivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助fujia55采纳,获得10
刚刚
刚刚
刚刚
1秒前
朱孝培发布了新的文献求助10
1秒前
小蘑菇应助科研小辣机采纳,获得200
1秒前
lyy完成签到,获得积分10
2秒前
火星上的汉堡完成签到,获得积分20
2秒前
4秒前
田様应助majar采纳,获得10
4秒前
木木酱完成签到,获得积分10
5秒前
不安雁菱完成签到,获得积分10
6秒前
6秒前
bkagyin应助庸人自扰采纳,获得10
7秒前
张益达发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
虫虫发布了新的文献求助10
9秒前
10秒前
10秒前
不安的妙之完成签到,获得积分20
10秒前
10秒前
sharronjxx完成签到,获得积分10
10秒前
11秒前
所所应助xuliang采纳,获得10
11秒前
小小完成签到,获得积分10
12秒前
12秒前
14秒前
14秒前
阳呐完成签到,获得积分10
14秒前
张益达完成签到,获得积分10
14秒前
14秒前
宇文天思发布了新的文献求助10
15秒前
Jiny发布了新的文献求助10
15秒前
zzzzzxh发布了新的文献求助10
16秒前
大狒狒发布了新的文献求助10
16秒前
16秒前
缺粥发布了新的文献求助10
17秒前
woxiangbiye发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3523477
求助须知:如何正确求助?哪些是违规求助? 3104405
关于积分的说明 9269941
捐赠科研通 2801231
什么是DOI,文献DOI怎么找? 1537527
邀请新用户注册赠送积分活动 715544
科研通“疑难数据库(出版商)”最低求助积分说明 708928