材料科学
光电子学
薄脆饼
图像传感器
氧化物
纳米技术
半导体
铟
光学
物理
冶金
作者
Anamika Sen,Heekyeong Park,Pavan Pujar,Arindam Bala,Haewon Cho,Na Liu,Srinivas Gandla,Sunkook Kim
出处
期刊:ACS Nano
[American Chemical Society]
日期:2022-06-13
卷期号:16 (6): 9267-9277
被引量:26
标识
DOI:10.1021/acsnano.2c01773
摘要
The technological ability to detect a wide spectrum range of illuminated visible-to-NIR is substantially improved for an amorphous metal oxide semiconductor, indium gallium zinc oxide (IGZO), without employing an additional photoabsorber. The fundamentally tuned morphology via structural engineering results in the creation of nanopores throughout the entire thickness of ∼30 nm. See-through nanopores have edge functionalization with vacancies, which leads to a large density of substates near the conduction band minima and valence band maxima. The presence of nanoring edges with a high concentration of vacancies is investigated using chemical composition analysis. The process of creating a nonporous morphology is sophisticated and is demonstrated using a wafer-scale phototransistor array. The performance of the phototransistors is assessed in terms of photosensitivity (S) and photoresponsivity (R); both are of high magnitudes (S = 8.6 × 104 at λex = 638 nm and Pinc = 512 mW cm2-; R = 120 A W1- at Pinc = 2 mW cm2- for the same λex). Additionally, the 7 × 5 array of 35 phototransistors is effective in sensing and reproducing the input image by responding to selectively illuminated pixels.
科研通智能强力驱动
Strongly Powered by AbleSci AI