Forecasting gold price using a novel hybrid model with ICEEMDAN and LSTM-CNN-CBAM

计算机科学 人工智能 机器学习
作者
Yanhui Liang,Yu Lin,Qin Lu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:206: 117847-117847 被引量:102
标识
DOI:10.1016/j.eswa.2022.117847
摘要

• Adopt a novel hybrid model with frequency decomposition for gold prices prediction. • Use the improved CEEMDAN (ICEEMDAN) to improve the prediction performance. • Pass the inspection of standard measurement and MCS test. • Show remarkable superiority in forecasting accuracy over compared models. Gold price has always played an important role in the world economy and finance. In order to predict the gold price more accurately, this paper proposes a novel decomposition-ensemble model. Firstly, the original gold prices are decomposed into sublayers with different frequencies by the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN). Secondly, the long short-term memory, convolutional neural networks, and convolutional block attention module (LSTM-CNN-CBAM) joint forecasting all sublayers. Finally, the prediction of the sublayers with different models is reconstructed as the final predicted results with the summation method. Among them, the proposed model could capture the essence of sequence effectively through ICEEMDAN algorithm, extract the long-term effect of the gold price by LSTM, mining the deep features of gold price data with CNN, and improving the feature extraction ability of the network through CBAM. It is proved by experiment that the cooperation among LSTM, CNN and CBAM can strengthen the modeling ability and improve the prediction accuracy. Moreover, the decomposition algorithm ICEEMDAN can further increase the forecast precision, and the prediction effect is better than other decomposition methods. Overall, the novel model ICEEMDAN-LSTM-CNN-CBAM (ILCC) could enhance the prediction accuracy and outperform other related comparative models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
可爱的函函应助娜行采纳,获得10
刚刚
鱼圆杂铺完成签到 ,获得积分10
刚刚
Danielle完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
呆呆发布了新的文献求助10
1秒前
只只完成签到,获得积分20
1秒前
WNL发布了新的文献求助10
2秒前
彭珊完成签到,获得积分10
2秒前
Rocky发布了新的文献求助10
2秒前
Charon922完成签到,获得积分10
2秒前
2秒前
酒尚温发布了新的文献求助50
2秒前
2秒前
科目三应助黑米粥采纳,获得10
3秒前
共享精神应助AnasYusuf采纳,获得10
3秒前
3秒前
嘟嘟金子完成签到,获得积分10
3秒前
wyh发布了新的文献求助10
3秒前
好了发布了新的文献求助10
3秒前
善良的远锋完成签到,获得积分10
3秒前
愉快的冰珍完成签到 ,获得积分20
4秒前
个木完成签到,获得积分20
4秒前
一平发布了新的文献求助10
5秒前
5秒前
乐观期待发布了新的文献求助30
5秒前
小蘑菇应助Ricardo采纳,获得10
5秒前
抓恐龙发布了新的文献求助10
5秒前
6秒前
123完成签到,获得积分20
6秒前
7秒前
合适的半青应助靓丽涵易采纳,获得10
7秒前
xuan完成签到,获得积分10
7秒前
7秒前
zhl完成签到,获得积分10
8秒前
大模型应助轻松的雨旋采纳,获得10
8秒前
zhu完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672