亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Scene graph generation with award-punishment strategy

计算机科学 谓词(数理逻辑) 人工智能 场景图 图形 对象(语法) 冗余(工程) 机器学习 理论计算机科学 渲染(计算机图形) 程序设计语言 操作系统
作者
Haiyan Gao,Dibo Shi,Tianling Jiang,Xin Li,Zefan Zhang,Yi Ji,Ying Li,Chunping Liu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:251: 109239-109239 被引量:1
标识
DOI:10.1016/j.knosys.2022.109239
摘要

The scene graph can provide a structured representation for downstream tasks given an image. To generate a fine-grained one, many researchers have attempted to alleviate the long-tailed dataset bias by energy-based learning, causal reasoning or other mechanisms. Nevertheless, they are still restricted to the biased dataset because of the redundancy of head information and the lack of tail information. In this work, we propose a comprehensive and ground-breaking model called Balanced Award-Punishment Model (BAPM) to tackle the problem. The BAPM consists of the stochastic strategy module (SSM), the knowledge transfer module (KTM) and the lateral inhibition loss (LIL). Concretely, the SSM takes dropout to form two different domain spaces for KTM, enhancing the tail information of the object level by constantly learning from another domain. The KTM aims to acquire abundant knowledge of tail predicates by transferring the fine-grained information from one domain to another. The SSM and KTM can be regarded as knowledge awards (KA) due to the incentive for tail data. The LIL mimics the competitive mechanism of neurons to smoothly adjust the weight of each object or each predicate by focal strategy. We regard the LIL as redundancy punishment (RP) owing to taking the restriction for head data into account. Under the joint award-punishment scheme, our approach has achieved state-of-the-art performance on two complementary metrics. The quantitative and qualitative experimental results on Visual Genome dataset show that our BAPM further reduce the dataset bias and generates more diverse scene graphs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
15秒前
彭于晏应助Rick采纳,获得10
37秒前
41秒前
SciGPT应助浅弋采纳,获得10
47秒前
53秒前
58秒前
cqhecq发布了新的文献求助10
1分钟前
JZX发布了新的文献求助10
1分钟前
1分钟前
Hello应助JZX采纳,获得30
1分钟前
浅弋发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Rick发布了新的文献求助10
1分钟前
Leofar完成签到 ,获得积分10
1分钟前
Rick完成签到,获得积分10
1分钟前
himes发布了新的文献求助10
1分钟前
1分钟前
英姑应助balabala采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
balabala发布了新的文献求助10
2分钟前
阿亮发布了新的文献求助10
2分钟前
王旺碎冰冰完成签到,获得积分20
2分钟前
量子星尘发布了新的文献求助10
2分钟前
fladen发布了新的文献求助200
3分钟前
领导范儿应助cqhecq采纳,获得30
3分钟前
Wfmmm完成签到,获得积分10
3分钟前
4分钟前
完美世界应助无辜笑容采纳,获得10
4分钟前
cqhecq发布了新的文献求助30
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
香蕉觅云应助cqhecq采纳,获得30
5分钟前
Akim应助玄音采纳,获得10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957040
求助须知:如何正确求助?哪些是违规求助? 3503056
关于积分的说明 11111228
捐赠科研通 3234093
什么是DOI,文献DOI怎么找? 1787725
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264