Scene graph generation with award-punishment strategy

计算机科学 谓词(数理逻辑) 人工智能 场景图 图形 对象(语法) 冗余(工程) 机器学习 理论计算机科学 渲染(计算机图形) 程序设计语言 操作系统
作者
Haiyan Gao,Dibo Shi,Tianling Jiang,Xin Li,Zefan Zhang,Yi Ji,Ying Li,Chunping Liu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:251: 109239-109239 被引量:1
标识
DOI:10.1016/j.knosys.2022.109239
摘要

The scene graph can provide a structured representation for downstream tasks given an image. To generate a fine-grained one, many researchers have attempted to alleviate the long-tailed dataset bias by energy-based learning, causal reasoning or other mechanisms. Nevertheless, they are still restricted to the biased dataset because of the redundancy of head information and the lack of tail information. In this work, we propose a comprehensive and ground-breaking model called Balanced Award-Punishment Model (BAPM) to tackle the problem. The BAPM consists of the stochastic strategy module (SSM), the knowledge transfer module (KTM) and the lateral inhibition loss (LIL). Concretely, the SSM takes dropout to form two different domain spaces for KTM, enhancing the tail information of the object level by constantly learning from another domain. The KTM aims to acquire abundant knowledge of tail predicates by transferring the fine-grained information from one domain to another. The SSM and KTM can be regarded as knowledge awards (KA) due to the incentive for tail data. The LIL mimics the competitive mechanism of neurons to smoothly adjust the weight of each object or each predicate by focal strategy. We regard the LIL as redundancy punishment (RP) owing to taking the restriction for head data into account. Under the joint award-punishment scheme, our approach has achieved state-of-the-art performance on two complementary metrics. The quantitative and qualitative experimental results on Visual Genome dataset show that our BAPM further reduce the dataset bias and generates more diverse scene graphs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默的书本完成签到,获得积分10
1秒前
1秒前
如意大侠完成签到,获得积分10
1秒前
长安完成签到,获得积分10
2秒前
1351567822发布了新的文献求助30
2秒前
ll发布了新的文献求助10
2秒前
sssss发布了新的文献求助10
3秒前
12366完成签到,获得积分10
3秒前
4秒前
5秒前
思源应助人间烟火采纳,获得10
5秒前
如意大侠发布了新的文献求助10
5秒前
情怀应助风中乘风采纳,获得10
6秒前
废柴发布了新的文献求助10
6秒前
7秒前
2389937250发布了新的文献求助200
7秒前
丘比特应助1234采纳,获得10
9秒前
Parotodus完成签到,获得积分10
9秒前
10秒前
10秒前
小二郎应助王wangWANG采纳,获得10
11秒前
12秒前
bkagyin应助神勇冰岚采纳,获得10
12秒前
f峰哥完成签到,获得积分10
13秒前
小二郎应助sssss采纳,获得10
13秒前
14秒前
废柴完成签到,获得积分10
14秒前
16秒前
16秒前
薰硝壤应助linty采纳,获得50
16秒前
16秒前
16秒前
狄从灵发布了新的文献求助10
17秒前
我是老大应助Febrine0502采纳,获得50
17秒前
细心故事发布了新的文献求助10
17秒前
Nanki发布了新的文献求助30
17秒前
FashionBoy应助ziyue采纳,获得10
17秒前
蔺剑愁完成签到,获得积分10
18秒前
人间烟火完成签到,获得积分10
19秒前
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148222
求助须知:如何正确求助?哪些是违规求助? 2799394
关于积分的说明 7834549
捐赠科研通 2456604
什么是DOI,文献DOI怎么找? 1307321
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655