Artificial Intelligence for Detecting and Delineating Margins of Early ESCC Under WLI Endoscopy

医学 内窥镜检查 医学物理学 内科学
作者
Wei Liu,Xianglei Yuan,Linjie Guo,Feng Pan,Chuncheng Wu,Zhongshang Sun,Feng Tian,Cong Yuan,Wanhong Zhang,Shuai Bai,Jing Feng,Yanxing Hu,Bing Hu
出处
期刊:Clinical and translational gastroenterology [American College of Gastroenterology]
卷期号:13 (1): e00433-e00433 被引量:14
标识
DOI:10.14309/ctg.0000000000000433
摘要

Conventional white light imaging (WLI) endoscopy is the most common screening technique used for detecting early esophageal squamous cell carcinoma (ESCC). Nevertheless, it is difficult to detect and delineate margins of early ESCC using WLI endoscopy. This study aimed to develop an artificial intelligence (AI) model to detect and delineate margins of early ESCC under WLI endoscopy.A total of 13,083 WLI images from 1,239 patients were used to train and test the AI model. To evaluate the detection performance of the model, 1,479 images and 563 images were used as internal and external validation data sets, respectively. For assessing the delineation performance of the model, 1,114 images and 211 images were used as internal and external validation data sets, respectively. In addition, 216 images were used to compare the delineation performance between the model and endoscopists.The model showed an accuracy of 85.7% and 84.5% in detecting lesions in internal and external validation, respectively. For delineating margins, the model achieved an accuracy of 93.4% and 95.7% in the internal and external validation, respectively, under an overlap ratio of 0.60. The accuracy of the model, senior endoscopists, and expert endoscopists in delineating margins were 98.1%, 78.6%, and 95.3%, respectively. The proposed model achieved similar delineating performance compared with that of expert endoscopists but superior to senior endoscopists.We successfully developed an AI model, which can be used to accurately detect early ESCC and delineate the margins of the lesions under WLI endoscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助余好运采纳,获得10
刚刚
天天快乐应助林夏采纳,获得10
1秒前
大模型应助研友_nv2r4n采纳,获得10
1秒前
一支小玫瑰完成签到 ,获得积分10
1秒前
aaaaarfv发布了新的文献求助10
2秒前
香蕉觅云应助楼山柳采纳,获得10
2秒前
科研通AI2S应助BGI789采纳,获得10
2秒前
王讯完成签到,获得积分10
2秒前
Yiphy发布了新的文献求助50
3秒前
3秒前
3秒前
悦耳香露完成签到,获得积分10
3秒前
4秒前
5秒前
赘婿应助张三采纳,获得10
5秒前
6秒前
7秒前
guojinyu发布了新的文献求助10
8秒前
tianzml0应助aaaaarfv采纳,获得10
8秒前
zhouyou发布了新的文献求助10
8秒前
小马甲应助大呲花采纳,获得10
9秒前
9秒前
CodeCraft应助左右NF123采纳,获得10
9秒前
10秒前
11秒前
11秒前
02完成签到,获得积分10
12秒前
春夏秋冬发布了新的文献求助10
12秒前
拼搏的宇完成签到,获得积分10
13秒前
林夏发布了新的文献求助10
13秒前
orixero应助一棵草采纳,获得10
14秒前
积极书双发布了新的文献求助10
14秒前
Cmy完成签到,获得积分20
14秒前
想个名字完成签到,获得积分10
14秒前
Hurricane完成签到,获得积分10
15秒前
15秒前
QL发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160558
求助须知:如何正确求助?哪些是违规求助? 2811730
关于积分的说明 7893251
捐赠科研通 2470605
什么是DOI,文献DOI怎么找? 1315658
科研通“疑难数据库(出版商)”最低求助积分说明 630920
版权声明 602042