Electrophysiological foundations of the human default-mode network revealed by intracranial-EEG recordings during resting-state and cognition

默认模式网络 静息状态功能磁共振成像 脑电图 电生理学 认知 神经科学 心理学 计算机科学
作者
Anup Das,Carlo de los Angeles,Vinod Menon
出处
期刊:NeuroImage [Elsevier]
卷期号:250: 118927-118927 被引量:39
标识
DOI:10.1016/j.neuroimage.2022.118927
摘要

Investigations using noninvasive functional magnetic resonance imaging (fMRI) have provided significant insights into the unique functional organization and profound importance of the human default mode network (DMN), yet these methods are limited in their ability to resolve network dynamics across multiple timescales. Electrophysiological techniques are critical to address these challenges, yet few studies have explored the neurophysiological underpinnings of the DMN. Here we investigate the electrophysiological organization of the DMN in a common large-scale network framework consistent with prior fMRI studies. We used intracranial EEG (iEEG) recordings, and evaluated intra- and cross-network interactions during resting-state and its modulation during a cognitive task involving episodic memory formation. Our analysis revealed significantly greater intra-DMN phase iEEG synchronization in the slow-wave (< 4 Hz), while DMN interactions with other brain networks was higher in the beta (12–30 Hz) and gamma (30–80 Hz) bands. Crucially, slow-wave intra-DMN synchronization was observed in the task-free resting-state and during both verbal memory encoding and recall. Compared to resting-state, slow-wave intra-DMN phase synchronization was significantly higher during both memory encoding and recall. Slow-wave intra-DMN phase synchronization increased during successful memory retrieval, highlighting its behavioral relevance. Finally, analysis of nonlinear dynamic causal interactions revealed that the DMN is a causal outflow network during both memory encoding and recall. Our findings identify frequency specific neurophysiological signatures of the DMN which allow it to maintain stability and flexibility, intrinsically and during task-based cognition, provide novel insights into the electrophysiological foundations of the human DMN, and elucidate network mechanisms by which it supports cognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zoloft完成签到,获得积分10
刚刚
忆韵完成签到,获得积分10
刚刚
susu完成签到,获得积分20
2秒前
隐形曼青应助YYJ25采纳,获得10
3秒前
3秒前
zoloft发布了新的文献求助10
4秒前
yhc完成签到,获得积分10
4秒前
季生发布了新的文献求助60
5秒前
老孙完成签到,获得积分10
6秒前
7秒前
汤浩宏完成签到,获得积分10
10秒前
10秒前
yudandan@CJLU发布了新的文献求助10
12秒前
Zkxxxx完成签到,获得积分10
12秒前
123完成签到,获得积分10
13秒前
大王卡完成签到,获得积分20
14秒前
14秒前
机智的紫丝完成签到,获得积分10
14秒前
TT发布了新的文献求助10
15秒前
田様应助啥,这都是啥采纳,获得10
18秒前
辛勤的孤容完成签到,获得积分10
19秒前
19秒前
19秒前
petrichor应助优美的跳跳糖采纳,获得1020
19秒前
科研通AI2S应助fleee采纳,获得10
19秒前
传奇3应助凝子老师采纳,获得10
20秒前
20秒前
20秒前
theverve完成签到,获得积分10
21秒前
ZJW完成签到,获得积分10
21秒前
完美世界应助bitahu采纳,获得10
21秒前
霸王龙完成签到,获得积分10
22秒前
24秒前
25秒前
YYJ25发布了新的文献求助10
25秒前
伯赏诗霜发布了新的文献求助50
26秒前
霸王龙发布了新的文献求助10
26秒前
ZJW发布了新的文献求助10
27秒前
ptjam完成签到 ,获得积分10
28秒前
miss发布了新的文献求助10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849