Wetland classification using parcel-level ensemble algorithm based on Gaofen-6 multispectral imagery and Sentinel-1 dataset

湿地 遥感 多光谱图像 分割 像素 环境科学 计算机科学 图像分割 合成孔径雷达 人工智能 地理 生态学 生物
作者
Meng Zhang,Hui Lin
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:606: 127462-127462 被引量:22
标识
DOI:10.1016/j.jhydrol.2022.127462
摘要

Wetland ecosystems have experienced dramatic challenges in the past few decades due to global climate change and human activities. Wetland maps are essential tools for conservation and management of terrestrial ecosystems. The objective of this study was to obtain an accurate wetland map using a parcel-level ensemble method based on Sentinel-1 SAR time series and segmentations generated from GF-6 MPS images. The Dongting Lake wetlands in China, which has a heterogeneous landscape, was deliberately chosen as a challenging case study. First, both VV and VH polarization backscatters (σ0 VV, σ0 VH) were generated from time series Sentinel-1 SAR. Speckle noise inherent in SAR data can affect the performance on image segmentation by resulting in over-segmentation or under-segmentation, and that will degrade the accuracies of wetland classification. Subsequently, optical data (Gaofen-6), which is effectively capable of delineating meaningful parcels, were applied to get the segmentations in this study. Finally, the ensemble method was utilized to extract the wetland information at parcel-level. The overall accuracy and Kappa coefficient of the object-based ensemble method are 90.58% and 0.88, which are 4.25% and 0.04 higher than that of the pixel-based method, respectively. Moreover, the object-based ensemble method for classification in high heterogeneity areas is superior and can greatly improve the performance compared with single classifiers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li发布了新的文献求助10
1秒前
wenni完成签到,获得积分10
2秒前
等光来完成签到,获得积分10
2秒前
无花果应助时尚俊驰采纳,获得10
3秒前
粗心的新之完成签到,获得积分10
3秒前
沉默的小天鹅应助Fonseca采纳,获得10
3秒前
cccui发布了新的文献求助10
3秒前
海豚有海完成签到 ,获得积分10
4秒前
哈温完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
916发布了新的文献求助50
6秒前
Unbelievable完成签到,获得积分10
6秒前
津津乐道完成签到,获得积分10
7秒前
yoyo完成签到 ,获得积分10
7秒前
7秒前
erhao完成签到,获得积分10
8秒前
龚幻梦发布了新的文献求助10
8秒前
9秒前
小花发布了新的文献求助10
9秒前
10秒前
三石发布了新的文献求助10
10秒前
生姜发布了新的文献求助10
11秒前
坛坛发布了新的文献求助10
11秒前
东皇太憨完成签到,获得积分10
11秒前
我是老大应助欢欢采纳,获得10
11秒前
Sunthief发布了新的文献求助30
12秒前
yusuf完成签到,获得积分10
12秒前
rookieLi应助kento采纳,获得30
12秒前
传奇3应助li采纳,获得10
12秒前
bluesky完成签到,获得积分10
13秒前
王平完成签到,获得积分10
14秒前
留胡子的白风完成签到,获得积分10
14秒前
我是老大应助大叉烧采纳,获得10
14秒前
15秒前
15秒前
虎虎生威完成签到,获得积分10
16秒前
17秒前
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653