Impact of Deep Learning Reconstruction Combined With a Sharpening Filter on Single-Shot Fast Spin-Echo T2-Weighted Magnetic Resonance Imaging of the Uterus

锐化 医学 快速自旋回波 单发 磁共振成像 自旋回波 滤波器(信号处理) Echo(通信协议) T2加权 人工智能 核磁共振 计算机科学 放射科 计算机视觉 光学 物理 计算机网络
作者
Takahiro Tsuboyama,Hiromitsu Onishi,Atsushi Nakamoto,Kazuya Ogawa,Yoshihiro Koyama,Hiroyuki Tarewaki,Noriyuki Tomiyama
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:57 (6): 379-386 被引量:15
标识
DOI:10.1097/rli.0000000000000847
摘要

This study aimed to evaluate the effects of deep learning (DL) reconstruction and a postprocessing sharpening filter on the image quality of single-shot fast spin-echo (SSFSE) T2-weighted imaging (T2WI) of the uterus.Fifty consecutive patients who underwent pelvic magnetic resonance imaging were included. Parasagittal T2WI with a slice thickness of 4 mm was obtained with the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and SSFSE sequences (mean scan time, 204 and 22 seconds, respectively). The following 3 types of SSFSE images were reconstructed, and the signal-to-noise ratio (SNR) and tissue contrast were assessed: conventional reconstruction (SSFSE-C), DL reconstruction (SSFSE-DL), and DL with a sharpening filter (SSFSE-DLF). Three radiologists independently assessed image quality, and area under the visual grading characteristics curve (AUCVGC) analysis was performed to compare the SSFSE and PROPELLER images.Compared with that of the PROPELLER images, the SNR of the SSFSE-C, SSFSE-DL, and SSFSE-DLF images was significantly lower (P < 0.05), significantly higher (P < 0.05), and equivalent, respectively. The SSFSE-DL images exhibited significantly lower contrast between the junctional zone and myometrium than those obtained with the other sequences (P < 0.05). In qualitative comparisons with the PROPELLER images, all 3 SSFSE sequences, SSFSE-DL, and SSFSE-DLF demonstrated significantly higher scores for artifacts, noise, and sharpness, respectively (P < 0.01). The overall image quality of SSFSE-C (mean AUCVGC, 0.03; P < 0.01) and SSFSE-DL (mean AUCVGC, 0.23; P < 0.01) was rated as significantly inferior, whereas that of SSFSE-DLF (mean AUCVGC, 0.69) was equivalent or significantly higher (P < 0.01).Using a combination of DL and a sharpening filter markedly increases the image quality of SSFSE of the uterus to the level of the PROPELLER sequence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Windsea完成签到,获得积分10
刚刚
李健应助苟文锋采纳,获得10
1秒前
何雨航发布了新的文献求助10
1秒前
2秒前
2秒前
Lucas应助lily采纳,获得10
3秒前
3秒前
lhr关闭了lhr文献求助
3秒前
4秒前
5秒前
6秒前
隐形曼青应助科研进化中采纳,获得10
6秒前
顶上之战发布了新的文献求助30
7秒前
千早爱音应助123采纳,获得10
9秒前
9秒前
chenmeimei2012完成签到 ,获得积分10
10秒前
10秒前
John发布了新的文献求助10
11秒前
12秒前
苟文锋发布了新的文献求助10
13秒前
14秒前
eating完成签到,获得积分10
15秒前
Windsea发布了新的文献求助10
16秒前
16秒前
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
16秒前
清脆天空发布了新的文献求助10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
及禾应助科研通管家采纳,获得20
16秒前
16秒前
浮游应助科研通管家采纳,获得10
17秒前
fyattojsk应助科研通管家采纳,获得20
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452