A bargaining game-based profit allocation method for the wind-hydrogen-storage combined system

风力发电 计算机科学 利润(经济学) 可再生能源 模棱两可 数学优化 储能 博弈论 讨价还价问题 环境经济学 运筹学
作者
Xiuli Wang,Bingkang Li,Yuwei Wang,Hao Lu,Huiru Zhao,Wanlei Xue
出处
期刊:Applied Energy [Elsevier]
卷期号:310: 118472-118472 被引量:2
标识
DOI:10.1016/j.apenergy.2021.118472
摘要

• Constructed a wind-hydrogen-storage combined system with low-carbon characteristics. • Dispatching of wind-hydrogen-storage combined system based on DRO model. • A profit allocation model is proposed based on the bargaining game theory. Aiming at the coexistence of multiple players in the wind-hydrogen-storage combined system, a new profit allocation mechanism is proposed. The combination of multiple stakeholders such as wind power plant (WT), hydrogen energy system (HE), and energy storage system (ES) can achieve the purpose of promoting renewable energy consumption by using renewable energy to produce hydrogen, so as to improve overall system benefits. However, WT, HE, and ES belong to different stakeholders, and wind output is uncertain, which affects the efficient operation of the wind-hydrogen-storage combined system. Based on this, firstly, the Wasserstein metric is used to characterize the ambiguity set of the probability distribution of wind output forecast error, and a distributionally robust optimization model considering the uncertainty of wind output and demand response is constructed to maximize the benefits of the wind-hydrogen-storage combined system. Secondly, in order to balance the profits of multiple players in the combined system, a profit allocation model considering the real contribution of each player is proposed based on the Nash-Harsanyi bargaining game theory. Finally, the effectiveness of the proposed distributionally robust optimization operation model and profit allocation method are verified by simulation in a typical wind-hydrogen-storage combined system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助流星采纳,获得10
1秒前
1秒前
1秒前
2秒前
2秒前
Unstoppable发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
千叶儿完成签到,获得积分20
3秒前
一米阳光发布了新的文献求助10
3秒前
ding应助ppppp采纳,获得10
3秒前
科研通AI6.1应助11111采纳,获得10
3秒前
3秒前
月月发布了新的文献求助10
3秒前
RR发布了新的文献求助10
3秒前
NexusExplorer应助zql采纳,获得10
4秒前
顾矜应助王通采纳,获得10
4秒前
大模型应助一一采纳,获得10
4秒前
麦克发布了新的文献求助10
5秒前
传奇3应助102755采纳,获得10
5秒前
jy关闭了jy文献求助
5秒前
Ting发布了新的文献求助10
6秒前
李浩发布了新的文献求助10
6秒前
zy完成签到 ,获得积分10
6秒前
Qps发布了新的文献求助10
7秒前
友好雪枫完成签到,获得积分10
7秒前
jrzsy完成签到,获得积分10
8秒前
千叶儿发布了新的文献求助10
9秒前
9秒前
9秒前
叨叨发布了新的文献求助20
9秒前
10秒前
10秒前
今后应助sssssss采纳,获得10
11秒前
11秒前
姚龙完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
pluto应助稳重的秋天采纳,获得10
12秒前
13秒前
Yiran发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207