Online Forest Disturbance Detection at the Sub-Annual Scale Using Spatial Context From Sparse Landsat Time Series

系列(地层学) 算法 背景(考古学) 比例(比率) 计算机科学 残余物 时间序列 数学 机器学习 地图学 地理 古生物学 考古 生物
作者
Ling Wu,Xiangnan Liu,Meiling Liu,Jinghui Yang,Lihong Zhu,Botian Zhou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:9
标识
DOI:10.1109/tgrs.2022.3145675
摘要

Mapping forest disturbances using dense time series can timely identify disturbances at the subannual scale. However, these change detection methods using dense time series may be infeasible when not enough temporal observations are available. In this article, an online change detection algorithm that identifies forest disturbances at a subannual scale using spatial context from the sparse Landsat time series was proposed. First, the spatial normalized index that removed forest seasonality was prepared for establishing a simplified model instead of the harmonic model, thereby reducing the requirements for a high temporal frequency of clear observations for model initialization. Second, by using the spatial errors model to establish the simplified model, the normally distributed residual time series that removed the spatial autocorrelation were obtained. Third, the spatial statistic $t$ time series transformed from residual time series within a $3\times3$ spatial window were subsequently subjected to the exponentially weighted moving average $t$ chart (EWMA-t), which is a statistical process control chart for a short cycle corresponding to sparse Landsat time series. Fourth, disturbed pixels were labeled if the chart values persistently deviated from the control limits of the chart. The proposed algorithm was applied to a subtropical forest with low Landsat data availability and yielded an overall accuracy of 86% in the spatial domain and temporal accuracy of 93.7%, achieving accurate and timely identification of forest disturbances. The proposed method called the EWMA-t change detection (EWMATCD) algorithm provides an alternative for disturbance detection at the subannual scale in regions with low data availability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
好运藏在善良里应助Sene采纳,获得10
1秒前
dwas完成签到,获得积分10
2秒前
完美世界应助caomao采纳,获得10
3秒前
TJ给TJ的求助进行了留言
3秒前
wx发布了新的文献求助10
3秒前
auraro发布了新的文献求助10
4秒前
小太阳发布了新的文献求助10
5秒前
7秒前
8秒前
科研通AI2S应助sunishope采纳,获得10
8秒前
9秒前
10秒前
Ava应助wx采纳,获得10
11秒前
12秒前
12秒前
13秒前
无花果应助重要的小猫咪采纳,获得10
15秒前
15秒前
Yyyy发布了新的文献求助30
16秒前
靴子发布了新的文献求助10
17秒前
17秒前
Singularity应助布鲁鲁采纳,获得20
17秒前
qazx发布了新的文献求助10
17秒前
17秒前
阿文发布了新的文献求助10
17秒前
jxx关注了科研通微信公众号
18秒前
cancan发布了新的文献求助10
18秒前
enchanted发布了新的文献求助10
19秒前
19秒前
20秒前
lunjianchi完成签到,获得积分10
21秒前
21秒前
温暖砖头发布了新的文献求助10
21秒前
22秒前
我讨厌文献综述完成签到 ,获得积分10
22秒前
大胆白凝发布了新的文献求助10
22秒前
上官若男应助缓慢代男采纳,获得30
25秒前
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313969
求助须知:如何正确求助?哪些是违规求助? 2946329
关于积分的说明 8529696
捐赠科研通 2621983
什么是DOI,文献DOI怎么找? 1434250
科研通“疑难数据库(出版商)”最低求助积分说明 665190
邀请新用户注册赠送积分活动 650774