亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Machine Learning Ensemble Based on Radiomics to Predict BI-RADS Category and Reduce the Biopsy Rate of Ultrasound-Detected Suspicious Breast Masses

双雷达 医学 超声波 放射科 活检 乳房成像 乳腺超声检查 组织病理学 置信区间 人工智能 乳腺摄影术 计算机科学 乳腺癌 病理 癌症 内科学
作者
Matteo Interlenghi,Christian Salvatore,Veronica Magni,Gabriele Caldara,Elia Schiavon,Andrea Cozzi,Simone Schiaffino,Luca A. Carbonaro,Isabella Castiglioni,Francesco Sardanelli
出处
期刊:Diagnostics [MDPI AG]
卷期号:12 (1): 187-187 被引量:9
标识
DOI:10.3390/diagnostics12010187
摘要

We developed a machine learning model based on radiomics to predict the BI-RADS category of ultrasound-detected suspicious breast lesions and support medical decision-making towards short-interval follow-up versus tissue sampling. From a retrospective 2015-2019 series of ultrasound-guided core needle biopsies performed by four board-certified breast radiologists using six ultrasound systems from three vendors, we collected 821 images of 834 suspicious breast masses from 819 patients, 404 malignant and 430 benign according to histopathology. A balanced image set of biopsy-proven benign (n = 299) and malignant (n = 299) lesions was used for training and cross-validation of ensembles of machine learning algorithms supervised during learning by histopathological diagnosis as a reference standard. Based on a majority vote (over 80% of the votes to have a valid prediction of benign lesion), an ensemble of support vector machines showed an ability to reduce the biopsy rate of benign lesions by 15% to 18%, always keeping a sensitivity over 94%, when externally tested on 236 images from two image sets: (1) 123 lesions (51 malignant and 72 benign) obtained from two ultrasound systems used for training and from a different one, resulting in a positive predictive value (PPV) of 45.9% (95% confidence interval 36.3-55.7%) versus a radiologists' PPV of 41.5% (p < 0.005), combined with a 98.0% sensitivity (89.6-99.9%); (2) 113 lesions (54 malignant and 59 benign) obtained from two ultrasound systems from vendors different from those used for training, resulting into a 50.5% PPV (40.4-60.6%) versus a radiologists' PPV of 47.8% (p < 0.005), combined with a 94.4% sensitivity (84.6-98.8%). Errors in BI-RADS 3 category (i.e., assigned by the model as BI-RADS 4) were 0.8% and 2.7% in the Testing set I and II, respectively. The board-certified breast radiologist accepted the BI-RADS classes assigned by the model in 114 masses (92.7%) and modified the BI-RADS classes of 9 breast masses (7.3%). In six of nine cases, the model performed better than the radiologist did, since it assigned a BI-RADS 3 classification to histopathology-confirmed benign masses that were classified as BI-RADS 4 by the radiologist.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhai完成签到 ,获得积分10
4秒前
CodeCraft应助Zhouyang采纳,获得10
8秒前
Umair完成签到,获得积分10
11秒前
29秒前
xiaozhao完成签到 ,获得积分10
37秒前
39秒前
morena发布了新的文献求助10
43秒前
大个应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
zho发布了新的文献求助10
1分钟前
平常安雁完成签到 ,获得积分10
1分钟前
1分钟前
笨笨的怜雪完成签到 ,获得积分10
1分钟前
提速狗完成签到,获得积分10
1分钟前
1分钟前
机灵的颜演完成签到 ,获得积分10
2分钟前
共享精神应助南风旧巷采纳,获得10
2分钟前
2分钟前
2分钟前
zho发布了新的文献求助10
2分钟前
2分钟前
2分钟前
茶茶发布了新的文献求助10
2分钟前
Akim应助xph采纳,获得10
2分钟前
2分钟前
3分钟前
Jasper应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
xph完成签到,获得积分20
3分钟前
492357816完成签到,获得积分10
3分钟前
wlei完成签到,获得积分10
3分钟前
xph发布了新的文献求助10
3分钟前
3分钟前
zho发布了新的文献求助10
3分钟前
3分钟前
啥时候吃火锅完成签到 ,获得积分0
3分钟前
囚徒完成签到,获得积分10
3分钟前
oaoalaa完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388415
求助须知:如何正确求助?哪些是违规求助? 3000764
关于积分的说明 8793601
捐赠科研通 2686868
什么是DOI,文献DOI怎么找? 1471874
科研通“疑难数据库(出版商)”最低求助积分说明 680665
邀请新用户注册赠送积分活动 673313