电催化剂
催化作用
X射线吸收光谱法
双金属片
纳米颗粒
材料科学
氧化态
过渡金属
析氧
扩展X射线吸收精细结构
氢氧化物
纳米材料基催化剂
无机化学
纳米技术
化学
吸收光谱法
物理化学
有机化学
电极
电化学
物理
量子力学
作者
Prashant Acharya,Ryan Manso,Adam S. Hoffman,Sergio I. Perez Bakovic,László Kékedy‐Nagy,Simon R. Bare,Jingyi Chen,Lauren F. Greenlee
标识
DOI:10.1021/acscatal.1c04881
摘要
Bimetallic iron–nickel oxide/hydroxide (FeNiO(H)x) nanocatalysts have emerged as nonprecious metal candidates for alkaline oxygen evolution reaction (OER) electrocatalysis. However, there are still significant open questions regarding the role of electrocatalyst synthesis route, and the resulting electrocatalyst morphology and nanoscale structure, in determining the operando atomic-scale structure when subjected to the faradic OER voltage environment. Herein, we report on two nanoparticle FeNiO(H)x electrocatalysts and their different chemical structures using operando X-ray absorption spectroscopy (XAS) studies at relevant OER conditions. The two bimetallic nanoparticle electrocatalysts were synthesized using aqueous (NP-aq) vs oil-based (NP-oil) synthesis routes but resulted in compositionally similar surface chemistry as-synthesized. Operando XAS results suggest that Ni oxidizes from the initial +2 oxidation state to +3/+4 state reminiscent of the transformation of α-Ni(OH)2 to γ-NiOOH; the oxidation state change is voltage-dependent and occurs in both NP-aq and NP-oil nanoparticles. There does not appear to be an oxidation state change for Fe, but the Fe coordination environment does change with voltage. The NP-aq nanoparticles resulted in Fe coordination transitions between Fe3+ Td, observed in as-synthesized and 0.8–0.9 V vs Ag/AgCl conditions, and Fe3+ Oh, observed at 0 V vs Ag/AgCl, while the NP-oil nanoparticles resulted in a largely stable Fe3+ Oh coordination with more subtle changes in the coordination environment. The voltage dependence of this Fe coordination transition is nanoparticle-dependent, with NP-aq nanoparticles transitioning dramatically at 0.7 V vs Ag/AgCl but NP-oil nanoparticles transitioning slowly starting at 0.1 V vs Ag/AgCl. Additionally, a shortening of both the Fe–O and Ni–O bond distances occurs for both nanoparticle materials, but the magnitude of change is different for NP-aq vs NP-oil, suggesting that the nanoparticle structures result in unique changes under applied potential. Extended X-ray absorption fine structure (EXAFS) analysis showed distinct chemical environments for the Fe species of NP-aq vs NP-oil, metallic Fe and Ni character in NP-aq, and Ni largely in a hydroxide phase for both nanoparticles. NP-aq results in improved activity and stability during OER, as compared to NP-oil, suggesting that the Fe3+ Oh → Td transition, metallic core, and a predominant Fe-incorporated Ni(OH)2 phase in the shell are important for OER performance. This study highlights that both the electrochemical environment and the as-synthesized morphology of nanoparticle electrocatalysts are important in determining the operational chemical structures and structure–performance relationships.
科研通智能强力驱动
Strongly Powered by AbleSci AI