A Novel Bayesian Deep Dual Network With Unsupervised Domain Adaptation for Transfer Fault Prognosis Across Different Machines

域适应 对偶(语法数字) 计算机科学 贝叶斯网络 推论 人工智能 学习迁移 贝叶斯概率 断层(地质) 深度学习 卷积神经网络 人工神经网络 机器学习 数据挖掘 模式识别(心理学) 艺术 文学类 地震学 分类器(UML) 地质学
作者
Cheng‐Geng Huang,Jun Zhu,Han Yu,Weiwen Peng
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (8): 7855-7867 被引量:21
标识
DOI:10.1109/jsen.2021.3133622
摘要

The existing deep learning-based fault prognostic methods require massive labeled condition monitoring (CM) data to train a well-generalized model. However, acquiring massive labeled CM data for real-case machines is infeasible due to time, economic costs, and safety concerns. Fortunately, we can handily obtain labeled CM data from relevant but different machines such as from accelerated degradation experiments in laboratories, which contain partially shared prognosis knowledge correlated to real-case machines. Accordingly, to bridge this practical gap, a novel Bayesian deep dual network with domain adaptation is developed to achieve transfer fault prognosis across different machines with distinct structures, measurement settings, and operating conditions. A deep convolutional neural network (DCNN)-multiple layer perceptron (MLP) dual network is first employed to extract abundant degradation representations from time series-based and time-frequency spectrum-based raw features. Then, domain adaptation regularization is imposed to relieve significant distribution discrepancy issue existing across different machines. Finally, the proposed DCNN-MLP dual network integrated with domain adaptation module is extended into Bayesian dual network through variational-inference (VI)-based method. The experimental verification demonstrates that the proposed method can accurately predict the remaining useful life percentage of testing bearings without any labeled CM data in target domain, and comparisons with other existing methods are also included.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒婷发布了新的文献求助10
刚刚
杨一完成签到 ,获得积分10
刚刚
terryok完成签到 ,获得积分10
刚刚
梅竹完成签到,获得积分10
1秒前
liujianxin完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助10
4秒前
王饱饱完成签到 ,获得积分10
4秒前
5秒前
00完成签到 ,获得积分10
7秒前
Clark完成签到,获得积分0
8秒前
8秒前
好吃的小米完成签到,获得积分10
9秒前
知性的水杯完成签到 ,获得积分10
10秒前
Li完成签到,获得积分10
10秒前
11秒前
元靖完成签到,获得积分10
12秒前
ju00完成签到,获得积分10
13秒前
14秒前
spring完成签到,获得积分10
14秒前
yafei完成签到 ,获得积分10
14秒前
白薇完成签到 ,获得积分10
14秒前
追寻的问玉完成签到 ,获得积分10
15秒前
golf完成签到,获得积分10
15秒前
16秒前
言非离完成签到,获得积分10
16秒前
cata应助小笼包采纳,获得10
17秒前
勤奋的花卷完成签到 ,获得积分10
17秒前
Foxjker完成签到 ,获得积分10
17秒前
ju00发布了新的文献求助10
18秒前
小茗同学完成签到,获得积分10
18秒前
wanci应助洽洽瓜子shine采纳,获得30
19秒前
halo完成签到 ,获得积分10
20秒前
愚者完成签到,获得积分10
21秒前
Hello应助cheng程采纳,获得10
21秒前
陈志刚完成签到,获得积分10
21秒前
桐桐应助刻苦的元灵采纳,获得10
21秒前
乐乐应助夏简柒采纳,获得10
22秒前
量子星尘发布了新的文献求助10
22秒前
gaowei完成签到 ,获得积分10
24秒前
小木完成签到,获得积分10
24秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584888
求助须知:如何正确求助?哪些是违规求助? 4668769
关于积分的说明 14771947
捐赠科研通 4616207
什么是DOI,文献DOI怎么找? 2530267
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590