A Novel Bayesian Deep Dual Network With Unsupervised Domain Adaptation for Transfer Fault Prognosis Across Different Machines

域适应 对偶(语法数字) 计算机科学 贝叶斯网络 推论 人工智能 学习迁移 贝叶斯概率 断层(地质) 深度学习 卷积神经网络 人工神经网络 机器学习 数据挖掘 模式识别(心理学) 艺术 地震学 地质学 文学类 分类器(UML)
作者
Cheng‐Geng Huang,Jun Zhu,Han Yu,Weiwen Peng
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (8): 7855-7867 被引量:21
标识
DOI:10.1109/jsen.2021.3133622
摘要

The existing deep learning-based fault prognostic methods require massive labeled condition monitoring (CM) data to train a well-generalized model. However, acquiring massive labeled CM data for real-case machines is infeasible due to time, economic costs, and safety concerns. Fortunately, we can handily obtain labeled CM data from relevant but different machines such as from accelerated degradation experiments in laboratories, which contain partially shared prognosis knowledge correlated to real-case machines. Accordingly, to bridge this practical gap, a novel Bayesian deep dual network with domain adaptation is developed to achieve transfer fault prognosis across different machines with distinct structures, measurement settings, and operating conditions. A deep convolutional neural network (DCNN)-multiple layer perceptron (MLP) dual network is first employed to extract abundant degradation representations from time series-based and time-frequency spectrum-based raw features. Then, domain adaptation regularization is imposed to relieve significant distribution discrepancy issue existing across different machines. Finally, the proposed DCNN-MLP dual network integrated with domain adaptation module is extended into Bayesian dual network through variational-inference (VI)-based method. The experimental verification demonstrates that the proposed method can accurately predict the remaining useful life percentage of testing bearings without any labeled CM data in target domain, and comparisons with other existing methods are also included.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助苹果采纳,获得10
刚刚
一缕阳光完成签到,获得积分10
刚刚
刚刚
顾冷安完成签到,获得积分10
刚刚
huishi105完成签到,获得积分10
1秒前
1秒前
znsmaqwdy完成签到,获得积分20
1秒前
1秒前
2秒前
Aura完成签到,获得积分10
2秒前
yys完成签到,获得积分10
3秒前
yys10l完成签到,获得积分10
4秒前
彭于晏应助ddd采纳,获得10
4秒前
4秒前
轻松的兔子完成签到,获得积分10
5秒前
5秒前
了0完成签到 ,获得积分10
5秒前
苏氨酸应助小郭采纳,获得10
5秒前
5秒前
Emma发布了新的文献求助10
6秒前
huishi105发布了新的文献求助10
7秒前
7秒前
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
收拾收拾应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
916应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
yar应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
收拾收拾应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650