A Novel Bayesian Deep Dual Network With Unsupervised Domain Adaptation for Transfer Fault Prognosis Across Different Machines

域适应 对偶(语法数字) 计算机科学 贝叶斯网络 推论 人工智能 学习迁移 贝叶斯概率 断层(地质) 深度学习 卷积神经网络 人工神经网络 机器学习 数据挖掘 模式识别(心理学) 艺术 文学类 地震学 分类器(UML) 地质学
作者
Cheng‐Geng Huang,Jun Zhu,Han Yu,Weiwen Peng
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (8): 7855-7867 被引量:21
标识
DOI:10.1109/jsen.2021.3133622
摘要

The existing deep learning-based fault prognostic methods require massive labeled condition monitoring (CM) data to train a well-generalized model. However, acquiring massive labeled CM data for real-case machines is infeasible due to time, economic costs, and safety concerns. Fortunately, we can handily obtain labeled CM data from relevant but different machines such as from accelerated degradation experiments in laboratories, which contain partially shared prognosis knowledge correlated to real-case machines. Accordingly, to bridge this practical gap, a novel Bayesian deep dual network with domain adaptation is developed to achieve transfer fault prognosis across different machines with distinct structures, measurement settings, and operating conditions. A deep convolutional neural network (DCNN)-multiple layer perceptron (MLP) dual network is first employed to extract abundant degradation representations from time series-based and time-frequency spectrum-based raw features. Then, domain adaptation regularization is imposed to relieve significant distribution discrepancy issue existing across different machines. Finally, the proposed DCNN-MLP dual network integrated with domain adaptation module is extended into Bayesian dual network through variational-inference (VI)-based method. The experimental verification demonstrates that the proposed method can accurately predict the remaining useful life percentage of testing bearings without any labeled CM data in target domain, and comparisons with other existing methods are also included.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英俊水池发布了新的文献求助10
1秒前
充电宝应助HU采纳,获得10
1秒前
可爱的函函应助musejie采纳,获得10
2秒前
2秒前
GlockieZhao完成签到,获得积分10
3秒前
5秒前
Yvonne发布了新的文献求助10
5秒前
无极微光应助ChenYX采纳,获得20
7秒前
kokp发布了新的文献求助10
7秒前
7秒前
momo完成签到,获得积分10
7秒前
8秒前
陶醉的代玉完成签到 ,获得积分10
8秒前
9秒前
充电宝应助仲谋采纳,获得10
9秒前
淡淡十三发布了新的文献求助10
10秒前
xzj完成签到,获得积分10
10秒前
11秒前
13秒前
脑洞疼应助ChenYX采纳,获得10
13秒前
无极微光应助ChenYX采纳,获得20
13秒前
今后应助ChenYX采纳,获得10
14秒前
CodeCraft应助ChenYX采纳,获得10
14秒前
CodeCraft应助huaner采纳,获得10
14秒前
汉堡包应助ChenYX采纳,获得10
14秒前
CR7应助ChenYX采纳,获得20
14秒前
无极微光应助淡淡十三采纳,获得20
14秒前
wanci应助ChenYX采纳,获得10
14秒前
无极微光应助ChenYX采纳,获得20
14秒前
无极微光应助ChenYX采纳,获得20
14秒前
乐乐应助ChenYX采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
ABCD发布了新的文献求助10
16秒前
16秒前
CipherSage应助科研通管家采纳,获得10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
谦让的凤灵完成签到,获得积分10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679544
求助须知:如何正确求助?哪些是违规求助? 4991293
关于积分的说明 15169832
捐赠科研通 4839336
什么是DOI,文献DOI怎么找? 2593253
邀请新用户注册赠送积分活动 1546377
关于科研通互助平台的介绍 1504488