A Novel Bayesian Deep Dual Network With Unsupervised Domain Adaptation for Transfer Fault Prognosis Across Different Machines

域适应 对偶(语法数字) 计算机科学 贝叶斯网络 推论 人工智能 学习迁移 贝叶斯概率 断层(地质) 深度学习 卷积神经网络 人工神经网络 机器学习 数据挖掘 模式识别(心理学) 艺术 文学类 地震学 分类器(UML) 地质学
作者
Cheng‐Geng Huang,Jun Zhu,Han Yu,Weiwen Peng
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (8): 7855-7867 被引量:21
标识
DOI:10.1109/jsen.2021.3133622
摘要

The existing deep learning-based fault prognostic methods require massive labeled condition monitoring (CM) data to train a well-generalized model. However, acquiring massive labeled CM data for real-case machines is infeasible due to time, economic costs, and safety concerns. Fortunately, we can handily obtain labeled CM data from relevant but different machines such as from accelerated degradation experiments in laboratories, which contain partially shared prognosis knowledge correlated to real-case machines. Accordingly, to bridge this practical gap, a novel Bayesian deep dual network with domain adaptation is developed to achieve transfer fault prognosis across different machines with distinct structures, measurement settings, and operating conditions. A deep convolutional neural network (DCNN)-multiple layer perceptron (MLP) dual network is first employed to extract abundant degradation representations from time series-based and time-frequency spectrum-based raw features. Then, domain adaptation regularization is imposed to relieve significant distribution discrepancy issue existing across different machines. Finally, the proposed DCNN-MLP dual network integrated with domain adaptation module is extended into Bayesian dual network through variational-inference (VI)-based method. The experimental verification demonstrates that the proposed method can accurately predict the remaining useful life percentage of testing bearings without any labeled CM data in target domain, and comparisons with other existing methods are also included.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小谭完成签到 ,获得积分10
1秒前
111完成签到,获得积分10
2秒前
平淡初雪完成签到,获得积分10
2秒前
dirk完成签到,获得积分10
3秒前
大大彬完成签到 ,获得积分10
4秒前
帅男完成签到,获得积分10
5秒前
李汀完成签到,获得积分10
6秒前
斑马发布了新的文献求助10
6秒前
科研求求你嘛完成签到,获得积分0
6秒前
7秒前
光敏剂完成签到,获得积分10
7秒前
木木完成签到 ,获得积分10
7秒前
kkkkk完成签到,获得积分10
8秒前
lezard发布了新的文献求助10
8秒前
shin0324完成签到,获得积分10
8秒前
不系舟完成签到,获得积分10
8秒前
不太想学习完成签到 ,获得积分10
10秒前
可靠的书本完成签到,获得积分10
12秒前
啊楠完成签到,获得积分10
12秒前
14秒前
汀汀完成签到,获得积分20
15秒前
量子星尘发布了新的文献求助10
15秒前
整齐豆芽完成签到 ,获得积分10
15秒前
菜鸟学习完成签到 ,获得积分10
16秒前
小杨完成签到,获得积分10
16秒前
羽扇纶巾完成签到,获得积分10
17秒前
18秒前
superlit完成签到,获得积分10
18秒前
qiqi完成签到,获得积分10
19秒前
oxygen253完成签到,获得积分10
19秒前
magic7发布了新的文献求助10
20秒前
Jackson333完成签到,获得积分10
21秒前
cimu95完成签到 ,获得积分10
22秒前
lzz完成签到,获得积分10
22秒前
Sandy完成签到,获得积分10
23秒前
666完成签到,获得积分10
23秒前
子非鱼完成签到,获得积分10
24秒前
肖耶啵完成签到,获得积分10
26秒前
Y2LSK完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645160
求助须知:如何正确求助?哪些是违规求助? 4767911
关于积分的说明 15026597
捐赠科研通 4803591
什么是DOI,文献DOI怎么找? 2568393
邀请新用户注册赠送积分活动 1525717
关于科研通互助平台的介绍 1485369