A Novel Bayesian Deep Dual Network With Unsupervised Domain Adaptation for Transfer Fault Prognosis Across Different Machines

域适应 对偶(语法数字) 计算机科学 贝叶斯网络 推论 人工智能 学习迁移 贝叶斯概率 断层(地质) 深度学习 卷积神经网络 人工神经网络 机器学习 数据挖掘 模式识别(心理学) 艺术 地震学 地质学 文学类 分类器(UML)
作者
Cheng‐Geng Huang,Jun Zhu,Han Yu,Weiwen Peng
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (8): 7855-7867 被引量:21
标识
DOI:10.1109/jsen.2021.3133622
摘要

The existing deep learning-based fault prognostic methods require massive labeled condition monitoring (CM) data to train a well-generalized model. However, acquiring massive labeled CM data for real-case machines is infeasible due to time, economic costs, and safety concerns. Fortunately, we can handily obtain labeled CM data from relevant but different machines such as from accelerated degradation experiments in laboratories, which contain partially shared prognosis knowledge correlated to real-case machines. Accordingly, to bridge this practical gap, a novel Bayesian deep dual network with domain adaptation is developed to achieve transfer fault prognosis across different machines with distinct structures, measurement settings, and operating conditions. A deep convolutional neural network (DCNN)-multiple layer perceptron (MLP) dual network is first employed to extract abundant degradation representations from time series-based and time-frequency spectrum-based raw features. Then, domain adaptation regularization is imposed to relieve significant distribution discrepancy issue existing across different machines. Finally, the proposed DCNN-MLP dual network integrated with domain adaptation module is extended into Bayesian dual network through variational-inference (VI)-based method. The experimental verification demonstrates that the proposed method can accurately predict the remaining useful life percentage of testing bearings without any labeled CM data in target domain, and comparisons with other existing methods are also included.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
652183758完成签到 ,获得积分10
1秒前
yuanletong完成签到 ,获得积分10
2秒前
天涯倦客完成签到,获得积分10
2秒前
Owen应助carrieschen采纳,获得10
2秒前
小熊软糖完成签到,获得积分10
2秒前
WYang完成签到,获得积分10
2秒前
3秒前
4秒前
科研通AI2S应助希勤采纳,获得10
4秒前
Ye发布了新的文献求助10
7秒前
乐乐应助Fin2046采纳,获得10
7秒前
涛哥发布了新的文献求助10
7秒前
wanci应助dw采纳,获得10
8秒前
图图完成签到 ,获得积分10
8秒前
獭祭鱼完成签到,获得积分10
8秒前
辛勤的香芦应助不要引力采纳,获得10
9秒前
元谷雪应助wzq采纳,获得10
10秒前
阿湫完成签到,获得积分10
11秒前
李小恒发布了新的文献求助10
11秒前
12秒前
windcreator完成签到,获得积分10
12秒前
谨慎惋庭完成签到,获得积分10
13秒前
大个应助涛哥采纳,获得10
13秒前
852应助獭祭鱼采纳,获得10
13秒前
wangxy完成签到,获得积分10
14秒前
传奇3应助wangayting采纳,获得30
14秒前
18秒前
18秒前
浩浩完成签到 ,获得积分10
19秒前
哈哈哈哈完成签到,获得积分10
19秒前
dery发布了新的文献求助10
21秒前
Ye发布了新的文献求助50
21秒前
LL完成签到 ,获得积分10
22秒前
彳亍1117应助温暖乌龟采纳,获得10
22秒前
23秒前
FXH发布了新的文献求助10
24秒前
涛哥完成签到,获得积分20
24秒前
自觉的月亮完成签到,获得积分10
25秒前
26秒前
28秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139837
求助须知:如何正确求助?哪些是违规求助? 2790697
关于积分的说明 7796331
捐赠科研通 2447121
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601185