A Novel Bayesian Deep Dual Network With Unsupervised Domain Adaptation for Transfer Fault Prognosis Across Different Machines

域适应 对偶(语法数字) 计算机科学 贝叶斯网络 推论 人工智能 学习迁移 贝叶斯概率 断层(地质) 深度学习 卷积神经网络 人工神经网络 机器学习 数据挖掘 模式识别(心理学) 艺术 文学类 地震学 分类器(UML) 地质学
作者
Cheng‐Geng Huang,Jun Zhu,Han Yu,Weiwen Peng
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (8): 7855-7867 被引量:21
标识
DOI:10.1109/jsen.2021.3133622
摘要

The existing deep learning-based fault prognostic methods require massive labeled condition monitoring (CM) data to train a well-generalized model. However, acquiring massive labeled CM data for real-case machines is infeasible due to time, economic costs, and safety concerns. Fortunately, we can handily obtain labeled CM data from relevant but different machines such as from accelerated degradation experiments in laboratories, which contain partially shared prognosis knowledge correlated to real-case machines. Accordingly, to bridge this practical gap, a novel Bayesian deep dual network with domain adaptation is developed to achieve transfer fault prognosis across different machines with distinct structures, measurement settings, and operating conditions. A deep convolutional neural network (DCNN)-multiple layer perceptron (MLP) dual network is first employed to extract abundant degradation representations from time series-based and time-frequency spectrum-based raw features. Then, domain adaptation regularization is imposed to relieve significant distribution discrepancy issue existing across different machines. Finally, the proposed DCNN-MLP dual network integrated with domain adaptation module is extended into Bayesian dual network through variational-inference (VI)-based method. The experimental verification demonstrates that the proposed method can accurately predict the remaining useful life percentage of testing bearings without any labeled CM data in target domain, and comparisons with other existing methods are also included.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lucas发布了新的文献求助10
刚刚
素雅发布了新的文献求助10
刚刚
比比完成签到,获得积分10
刚刚
Rheanna完成签到,获得积分10
刚刚
三水发布了新的文献求助10
1秒前
小二郎应助文静的柠檬采纳,获得10
1秒前
MASAMI完成签到,获得积分10
2秒前
null发布了新的文献求助10
2秒前
Aenuu完成签到,获得积分10
3秒前
4秒前
dan完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
Owen应助昏睡的一一采纳,获得10
4秒前
4秒前
4秒前
4秒前
火星上凌雪完成签到 ,获得积分10
5秒前
qiuxu发布了新的文献求助10
5秒前
5秒前
5秒前
慕青应助柒tt采纳,获得10
6秒前
善学以致用应助鹿梦采纳,获得10
6秒前
落寞的沛春完成签到,获得积分10
6秒前
7秒前
didi完成签到,获得积分10
7秒前
三人行完成签到,获得积分10
7秒前
KeldonHuang完成签到,获得积分10
7秒前
7秒前
Morris完成签到,获得积分10
7秒前
7秒前
Dgr完成签到,获得积分10
7秒前
8秒前
小二郎应助小5采纳,获得10
8秒前
传奇3应助chaofan采纳,获得10
8秒前
9秒前
粗暴的背包完成签到,获得积分10
9秒前
9秒前
从容白羊完成签到,获得积分10
9秒前
东方元语应助张哈哈采纳,获得20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472789
求助须知:如何正确求助?哪些是违规求助? 4575000
关于积分的说明 14349787
捐赠科研通 4502378
什么是DOI,文献DOI怎么找? 2467070
邀请新用户注册赠送积分活动 1455052
关于科研通互助平台的介绍 1429246