A Novel Bayesian Deep Dual Network With Unsupervised Domain Adaptation for Transfer Fault Prognosis Across Different Machines

域适应 对偶(语法数字) 计算机科学 贝叶斯网络 推论 人工智能 学习迁移 贝叶斯概率 断层(地质) 深度学习 卷积神经网络 人工神经网络 机器学习 数据挖掘 模式识别(心理学) 艺术 地震学 地质学 文学类 分类器(UML)
作者
Cheng‐Geng Huang,Jun Zhu,Han Yu,Weiwen Peng
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (8): 7855-7867 被引量:21
标识
DOI:10.1109/jsen.2021.3133622
摘要

The existing deep learning-based fault prognostic methods require massive labeled condition monitoring (CM) data to train a well-generalized model. However, acquiring massive labeled CM data for real-case machines is infeasible due to time, economic costs, and safety concerns. Fortunately, we can handily obtain labeled CM data from relevant but different machines such as from accelerated degradation experiments in laboratories, which contain partially shared prognosis knowledge correlated to real-case machines. Accordingly, to bridge this practical gap, a novel Bayesian deep dual network with domain adaptation is developed to achieve transfer fault prognosis across different machines with distinct structures, measurement settings, and operating conditions. A deep convolutional neural network (DCNN)-multiple layer perceptron (MLP) dual network is first employed to extract abundant degradation representations from time series-based and time-frequency spectrum-based raw features. Then, domain adaptation regularization is imposed to relieve significant distribution discrepancy issue existing across different machines. Finally, the proposed DCNN-MLP dual network integrated with domain adaptation module is extended into Bayesian dual network through variational-inference (VI)-based method. The experimental verification demonstrates that the proposed method can accurately predict the remaining useful life percentage of testing bearings without any labeled CM data in target domain, and comparisons with other existing methods are also included.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
cruise发布了新的文献求助10
1秒前
向日葵的Rui完成签到,获得积分10
1秒前
小xy发布了新的文献求助10
1秒前
2秒前
香蕉觅云应助青石采纳,获得10
2秒前
科目三应助yangyang采纳,获得10
2秒前
仄兀发布了新的文献求助10
2秒前
小小鱼发布了新的文献求助10
2秒前
孙成成完成签到 ,获得积分10
3秒前
ee完成签到,获得积分10
3秒前
刘德华完成签到,获得积分10
3秒前
Disci完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
5秒前
帅气鹭洋发布了新的文献求助10
5秒前
夏昼发布了新的文献求助10
5秒前
cometx完成签到 ,获得积分10
6秒前
路之遥兮发布了新的文献求助10
6秒前
yy发布了新的文献求助10
6秒前
6秒前
852应助100采纳,获得10
6秒前
爱静静应助cruise采纳,获得10
7秒前
Singularity应助cruise采纳,获得10
7秒前
VDC应助cruise采纳,获得30
7秒前
7秒前
7秒前
了晨完成签到 ,获得积分10
8秒前
小xy完成签到,获得积分10
8秒前
9秒前
小昼完成签到 ,获得积分10
9秒前
尊敬的完成签到,获得积分10
10秒前
10秒前
整齐海秋完成签到,获得积分10
10秒前
10秒前
善学以致用应助白榆采纳,获得10
10秒前
JamesPei应助易达采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678