清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Novel Bayesian Deep Dual Network With Unsupervised Domain Adaptation for Transfer Fault Prognosis Across Different Machines

域适应 对偶(语法数字) 计算机科学 贝叶斯网络 推论 人工智能 学习迁移 贝叶斯概率 断层(地质) 深度学习 卷积神经网络 人工神经网络 机器学习 数据挖掘 模式识别(心理学) 艺术 文学类 地震学 分类器(UML) 地质学
作者
Cheng‐Geng Huang,Jun Zhu,Han Yu,Weiwen Peng
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (8): 7855-7867 被引量:21
标识
DOI:10.1109/jsen.2021.3133622
摘要

The existing deep learning-based fault prognostic methods require massive labeled condition monitoring (CM) data to train a well-generalized model. However, acquiring massive labeled CM data for real-case machines is infeasible due to time, economic costs, and safety concerns. Fortunately, we can handily obtain labeled CM data from relevant but different machines such as from accelerated degradation experiments in laboratories, which contain partially shared prognosis knowledge correlated to real-case machines. Accordingly, to bridge this practical gap, a novel Bayesian deep dual network with domain adaptation is developed to achieve transfer fault prognosis across different machines with distinct structures, measurement settings, and operating conditions. A deep convolutional neural network (DCNN)-multiple layer perceptron (MLP) dual network is first employed to extract abundant degradation representations from time series-based and time-frequency spectrum-based raw features. Then, domain adaptation regularization is imposed to relieve significant distribution discrepancy issue existing across different machines. Finally, the proposed DCNN-MLP dual network integrated with domain adaptation module is extended into Bayesian dual network through variational-inference (VI)-based method. The experimental verification demonstrates that the proposed method can accurately predict the remaining useful life percentage of testing bearings without any labeled CM data in target domain, and comparisons with other existing methods are also included.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糟糕的翅膀完成签到,获得积分10
9秒前
1分钟前
平凡之路发布了新的文献求助10
1分钟前
Ma完成签到,获得积分10
1分钟前
激动的似狮完成签到,获得积分10
2分钟前
fabius0351完成签到 ,获得积分10
3分钟前
linglingling完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
细心书包完成签到,获得积分10
6分钟前
砺行应助科研通管家采纳,获得10
6分钟前
白天亮完成签到,获得积分10
7分钟前
iman完成签到,获得积分10
7分钟前
7分钟前
makeincraze发布了新的文献求助10
8分钟前
sky驳回了核桃应助
8分钟前
紧张的书文完成签到 ,获得积分10
9分钟前
闪闪的梦槐完成签到 ,获得积分10
9分钟前
林利芳完成签到 ,获得积分0
9分钟前
砺行应助科研通管家采纳,获得150
10分钟前
量子星尘发布了新的文献求助10
11分钟前
酷酷海豚完成签到,获得积分10
11分钟前
韶绍完成签到 ,获得积分10
12分钟前
Hey完成签到 ,获得积分10
13分钟前
13分钟前
李爱国应助任性沛槐采纳,获得10
13分钟前
13分钟前
任性沛槐发布了新的文献求助10
14分钟前
科研通AI5应助科研通管家采纳,获得10
14分钟前
14分钟前
3655001Liu发布了新的文献求助10
14分钟前
silsotiscolor完成签到,获得积分10
14分钟前
Oculus完成签到 ,获得积分10
15分钟前
guan完成签到,获得积分10
15分钟前
脑洞疼应助maclogos采纳,获得10
15分钟前
乐乐应助zhangxiaopan采纳,获得10
17分钟前
FuRui发布了新的文献求助10
17分钟前
17分钟前
maclogos发布了新的文献求助10
17分钟前
18分钟前
zhangxiaopan发布了新的文献求助10
18分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5138005
求助须知:如何正确求助?哪些是违规求助? 4337511
关于积分的说明 13511646
捐赠科研通 4176375
什么是DOI,文献DOI怎么找? 2290010
邀请新用户注册赠送积分活动 1290526
关于科研通互助平台的介绍 1232455