A Novel Bayesian Deep Dual Network With Unsupervised Domain Adaptation for Transfer Fault Prognosis Across Different Machines

域适应 对偶(语法数字) 计算机科学 贝叶斯网络 推论 人工智能 学习迁移 贝叶斯概率 断层(地质) 深度学习 卷积神经网络 人工神经网络 机器学习 数据挖掘 模式识别(心理学) 艺术 文学类 地震学 分类器(UML) 地质学
作者
Cheng‐Geng Huang,Jun Zhu,Han Yu,Weiwen Peng
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (8): 7855-7867 被引量:21
标识
DOI:10.1109/jsen.2021.3133622
摘要

The existing deep learning-based fault prognostic methods require massive labeled condition monitoring (CM) data to train a well-generalized model. However, acquiring massive labeled CM data for real-case machines is infeasible due to time, economic costs, and safety concerns. Fortunately, we can handily obtain labeled CM data from relevant but different machines such as from accelerated degradation experiments in laboratories, which contain partially shared prognosis knowledge correlated to real-case machines. Accordingly, to bridge this practical gap, a novel Bayesian deep dual network with domain adaptation is developed to achieve transfer fault prognosis across different machines with distinct structures, measurement settings, and operating conditions. A deep convolutional neural network (DCNN)-multiple layer perceptron (MLP) dual network is first employed to extract abundant degradation representations from time series-based and time-frequency spectrum-based raw features. Then, domain adaptation regularization is imposed to relieve significant distribution discrepancy issue existing across different machines. Finally, the proposed DCNN-MLP dual network integrated with domain adaptation module is extended into Bayesian dual network through variational-inference (VI)-based method. The experimental verification demonstrates that the proposed method can accurately predict the remaining useful life percentage of testing bearings without any labeled CM data in target domain, and comparisons with other existing methods are also included.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lixm发布了新的文献求助10
刚刚
刚刚
赘婿应助星辉斑斓采纳,获得10
刚刚
上官若男应助星辉斑斓采纳,获得10
刚刚
自然衣完成签到,获得积分10
刚刚
stephenzh完成签到 ,获得积分10
1秒前
wjx发布了新的文献求助10
1秒前
1秒前
在水一方应助胡浮浮采纳,获得10
2秒前
科研通AI6应助翟肇永采纳,获得10
2秒前
华仔应助清秀凌蝶采纳,获得10
2秒前
幻聽关注了科研通微信公众号
3秒前
科研小趴菜发布了新的文献求助150
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
高大绝义发布了新的文献求助10
6秒前
6秒前
希望天下0贩的0应助HXU采纳,获得10
6秒前
6秒前
7秒前
唉呦嘿发布了新的文献求助20
7秒前
zxszxs完成签到,获得积分10
8秒前
victor完成签到,获得积分20
8秒前
8秒前
sunyanghu369发布了新的文献求助10
8秒前
10秒前
Owen应助儒雅的巧曼采纳,获得10
10秒前
黄河鲤鱼儿完成签到,获得积分10
10秒前
10秒前
bi应助外星小精灵采纳,获得10
10秒前
玥月完成签到 ,获得积分10
10秒前
10秒前
foster发布了新的文献求助10
10秒前
victor发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618980
求助须知:如何正确求助?哪些是违规求助? 4703923
关于积分的说明 14924415
捐赠科研通 4758994
什么是DOI,文献DOI怎么找? 2550336
邀请新用户注册赠送积分活动 1513125
关于科研通互助平台的介绍 1474401