Malware detection with dynamic evolving graph convolutional networks

计算机科学 恶意软件 图形 理论计算机科学 软件 程序设计语言 计算机安全
作者
Zikai Zhang,Yidong Li,Wei Wang,Haifeng Song,Hairong Dong
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (10): 7261-7280 被引量:11
标识
DOI:10.1002/int.22880
摘要

Malware detection is a vital task for cybersecurity. For malware dynamic behavior, threats come from a small number of Application Programming Interfaces (APIs) embedded in the API sequences, which are easily ignored or obfuscated in the detection process. Prior works proposed graph-based learning methods to solve this problem using API-level behavior relations. However, the malware detection is still challenging, due to the ignore of the temporal correlation between malicious behaviors. In this study, we model the software behaviors with multiscaled API graph sequences to represent API-level behaviors as well as graph-level temporal behavior correlations. We then propose a novel Dynamic Evolving Graph Convolutional Network (DEGCN) model to capture dynamic evolving pattern of both local API-level and global graph-level software behaviors. In particular, we first extract the API-level (node) representations to capture the directed graph representations for each time slot. We then propose a Graph-encoding-based Gate Recurrent Unit (GGRU) network to capture the graph-level evolving features and their evolving status. The graph features of different time slots and different graph scales are concatenated to detect whether the software is benign or malicious. Our evaluation with two public benchmarks reports that DEGCN achieves the best performance compared with state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄茹发布了新的文献求助50
刚刚
大脸猪关注了科研通微信公众号
刚刚
草草完成签到,获得积分20
1秒前
小二郎应助kinger采纳,获得10
1秒前
lsss发布了新的文献求助10
2秒前
云枝完成签到,获得积分10
2秒前
2秒前
小二郎应助77采纳,获得10
3秒前
学好久发布了新的文献求助10
3秒前
顺利若完成签到,获得积分10
4秒前
5秒前
5秒前
gnufgg完成签到,获得积分10
5秒前
阿哲发布了新的文献求助10
6秒前
情怀应助听雪采纳,获得10
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
Yangqqqi完成签到,获得积分10
9秒前
Akim应助阿牛奶采纳,获得10
10秒前
Yangqqqi发布了新的文献求助10
11秒前
丘比特应助意意采纳,获得10
12秒前
田様应助lsss采纳,获得10
12秒前
yjf发布了新的文献求助10
13秒前
吃猫的鱼完成签到 ,获得积分10
13秒前
笨笨雅柏发布了新的文献求助10
14秒前
15秒前
清脆野狼发布了新的文献求助10
15秒前
让我康康发布了新的文献求助10
15秒前
17秒前
鹿lu发布了新的文献求助10
18秒前
杨羊羊发布了新的文献求助10
18秒前
领导范儿应助西番雅采纳,获得10
18秒前
19秒前
花菜炒肉完成签到 ,获得积分10
20秒前
byby关注了科研通微信公众号
22秒前
22秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222736
求助须知:如何正确求助?哪些是违规求助? 2871510
关于积分的说明 8175845
捐赠科研通 2538464
什么是DOI,文献DOI怎么找? 1370613
科研通“疑难数据库(出版商)”最低求助积分说明 645818
邀请新用户注册赠送积分活动 619700