医学
髓系白血病
骨髓
内科学
药代动力学
毒性
胃肠病学
白血病
耐火材料(行星科学)
药理学
核医学
作者
Todd L Rosenblat,Michael R McDevitt,Jorge A. Carrasquillo,Neeta Pandit-Taskar,Mark G Frattini,Peter Maslak,Jae H Park,Dan Douer,Dragan Cicic,Steven M. Larson,David A Scheinberg,Joseph G. Jurcic
标识
DOI:10.1158/1078-0432.ccr-21-3712
摘要
The anti-CD33 antibody lintuzumab has modest activity against acute myeloid leukemia (AML). To increase its potency, lintuzumab was conjugated to actinium-225 (225Ac), a radionuclide yielding 4 α-particles. This first-in-human, phase I trial was conducted to determine the safety, pharmacology, and biological activity of 225Ac-lintuzumab.Eighteen patients (median age, 64 years; range, 45-80) with relapsed or refractory AML received a single infusion of 225Ac-lintuzumab at activities of 18.5-148 kBq/kg.The maximum tolerated dose was 111 kBq/kg. Dose-limiting toxicities included myelosuppression lasting > 35 days in one patient receiving 148 kBq/kg and death from sepsis in two patients treated with 111 and 148 kBq/kg. Myelosuppression was the most common toxicity. Significant extramedullary toxicities were limited to transient grade 3 liver function abnormalities. Pharmacokinetics were determined by gamma counting serial whole blood, plasma, and urine samples at energy windows for the 225Ac daughters, francium-221 and bismuth-213. Two-phase elimination kinetics were seen with mean plasma t1/2-α and t1/2-β of 1.9 and 38 hours, respectively. Peripheral blood blasts were eliminated in 10 of 16 evaluable patients (63%) but only at doses of {greater than or equal to} 37 kBq/kg. Bone marrow blasts were reduced in 10 of 15 evaluable patients (67%), including 3 patients with marrow blasts {less than or equal to} 5% and 1 patient with a morphologic leukemia-free state.Therapy for AML with the targeted α-particle generator 225Ac-lintuzumab was feasible with an acceptable safety profile. Elimination of circulating blasts or reductions in marrow blasts were observed across all dose levels.
科研通智能强力驱动
Strongly Powered by AbleSci AI