Hyperspectral image information fusion-based detection of soluble solids content in red globe grapes

高光谱成像 主成分分析 降维 偏最小二乘回归 数学 人工智能 特征(语言学) 图像融合 模式识别(心理学) 计算机科学 图像(数学) 统计 语言学 哲学
作者
Sheng Gao,Jian-hua Xu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:196: 106822-106822 被引量:47
标识
DOI:10.1016/j.compag.2022.106822
摘要

The Soluble Solids Content (SSC) of red globe grapes is an important indicator of internal quality. In this paper, 360 red globe grapes in the growing stage were collected as samples and the spectral information and images of the samples were extracted. The Raw spectral (RAW) information was extracted using the one-time dimensionality reduction algorithm (GA, CARS, SPA, UVE) and the combined dimensionality reduction algorithm (CARS-SPA, UVE-SPA) to build the PLSR model of the spectral information. The grey-scale co-occurrence matrix of the image was extracted as the texture feature information of the image and combined with the color information of the image (R, G, B, H, S, V, L, a, b) to form 19 image features to build the PLSR model of the image information. Thus, the PLSR model based on the fusion of hyperspectral image information was built by fusing the spectra extracted with the successive projection algorithm (SPA) feature wavelength and the image information after dimensionality reduction by the principal component analysis algorithm (PCA). The results showed that if only the spectral information was used for modelling, the SPA algorithm effectively extracted the characteristic wavelengths of the red globe grapes of SSC spectral information and improved the prediction performance of the model. If only image information was used for modelling, the PCA algorithm effectively improved the detection performance of the model by dimensionality reduction, but the improved performance was limited. The correlation coefficients of the calibration set and prediction set of the PLSR model were 0.9775 and 0.9762, and the detection effect and stability of the model were greatly improved compared with those built unilaterally based on spectral information or image information, and a new non-destructive detection method was found for the detection about SSC of red globe grapes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
689发布了新的文献求助10
1秒前
baishui发布了新的文献求助10
1秒前
笔墨留香完成签到,获得积分10
1秒前
SHAO应助满意的山水采纳,获得30
2秒前
2秒前
2秒前
水水完成签到,获得积分10
2秒前
啊嘞嘞发布了新的文献求助10
3秒前
傻傻完成签到,获得积分20
4秒前
shalimar完成签到,获得积分10
4秒前
李志华完成签到,获得积分10
4秒前
可爱的函函应助水煮牛肉采纳,获得10
4秒前
tsts完成签到,获得积分10
4秒前
奶冻完成签到,获得积分10
5秒前
5秒前
5秒前
lzy发布了新的文献求助10
5秒前
失眠烨华发布了新的文献求助10
5秒前
Jun完成签到 ,获得积分10
5秒前
深情安青应助瞬华采纳,获得10
6秒前
6秒前
zzzkyt发布了新的文献求助10
6秒前
狂风阿来完成签到 ,获得积分10
6秒前
温柔的迎荷完成签到,获得积分10
7秒前
7秒前
7秒前
搜集达人应助xiekai301采纳,获得10
7秒前
夏冰完成签到,获得积分10
8秒前
木九黎完成签到,获得积分10
8秒前
biubiu发布了新的文献求助10
8秒前
田様应助mx采纳,获得10
9秒前
day_on发布了新的文献求助10
9秒前
娜娜发布了新的文献求助10
10秒前
郝56发布了新的文献求助10
10秒前
诚心谷南完成签到,获得积分10
10秒前
11秒前
apathy完成签到,获得积分10
11秒前
卢yi完成签到,获得积分20
11秒前
12秒前
hellosci666完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958507
求助须知:如何正确求助?哪些是违规求助? 3504843
关于积分的说明 11120375
捐赠科研通 3236122
什么是DOI,文献DOI怎么找? 1788663
邀请新用户注册赠送积分活动 871249
科研通“疑难数据库(出版商)”最低求助积分说明 802642