Hyperspectral image information fusion-based detection of soluble solids content in red globe grapes

高光谱成像 主成分分析 降维 偏最小二乘回归 数学 人工智能 特征(语言学) 图像融合 模式识别(心理学) 计算机科学 图像(数学) 统计 语言学 哲学
作者
Sheng Gao,Jian-hua Xu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:196: 106822-106822 被引量:38
标识
DOI:10.1016/j.compag.2022.106822
摘要

The Soluble Solids Content (SSC) of red globe grapes is an important indicator of internal quality. In this paper, 360 red globe grapes in the growing stage were collected as samples and the spectral information and images of the samples were extracted. The Raw spectral (RAW) information was extracted using the one-time dimensionality reduction algorithm (GA, CARS, SPA, UVE) and the combined dimensionality reduction algorithm (CARS-SPA, UVE-SPA) to build the PLSR model of the spectral information. The grey-scale co-occurrence matrix of the image was extracted as the texture feature information of the image and combined with the color information of the image (R, G, B, H, S, V, L, a, b) to form 19 image features to build the PLSR model of the image information. Thus, the PLSR model based on the fusion of hyperspectral image information was built by fusing the spectra extracted with the successive projection algorithm (SPA) feature wavelength and the image information after dimensionality reduction by the principal component analysis algorithm (PCA). The results showed that if only the spectral information was used for modelling, the SPA algorithm effectively extracted the characteristic wavelengths of the red globe grapes of SSC spectral information and improved the prediction performance of the model. If only image information was used for modelling, the PCA algorithm effectively improved the detection performance of the model by dimensionality reduction, but the improved performance was limited. The correlation coefficients of the calibration set and prediction set of the PLSR model were 0.9775 and 0.9762, and the detection effect and stability of the model were greatly improved compared with those built unilaterally based on spectral information or image information, and a new non-destructive detection method was found for the detection about SSC of red globe grapes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助zxx采纳,获得10
刚刚
研友_VZG7GZ应助面包采纳,获得10
刚刚
嗨哈尼完成签到,获得积分10
1秒前
OrthoLee完成签到,获得积分10
1秒前
cjcbb发布了新的文献求助10
1秒前
二十七垚发布了新的文献求助10
2秒前
希望天下0贩的0应助TKMY采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
ccy应助孤行者采纳,获得50
4秒前
简单澜完成签到,获得积分10
5秒前
无花果应助朱佳宁采纳,获得10
5秒前
深情安青应助帅气绮露采纳,获得10
5秒前
金润发布了新的文献求助10
6秒前
独特觅翠应助myg123采纳,获得10
7秒前
小仙女发布了新的文献求助10
8秒前
pwj发布了新的文献求助10
8秒前
9秒前
10秒前
Wenfeifei发布了新的文献求助10
10秒前
11秒前
球魁发布了新的文献求助10
11秒前
11秒前
共享精神应助coco采纳,获得10
12秒前
fifteen应助心仔采纳,获得10
12秒前
咔什么嚓发布了新的文献求助10
14秒前
千颂完成签到 ,获得积分10
15秒前
帅气绮露发布了新的文献求助10
16秒前
科研通AI2S应助lucky采纳,获得10
16秒前
17秒前
小夏饭桶应助neon采纳,获得10
17秒前
哈哈怪完成签到 ,获得积分10
17秒前
心台应助金润采纳,获得10
18秒前
Stageruner发布了新的文献求助30
20秒前
wenruan发布了新的文献求助10
21秒前
wennie完成签到,获得积分10
21秒前
李秋秋发布了新的文献求助30
21秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218664
求助须知:如何正确求助?哪些是违规求助? 2867783
关于积分的说明 8158089
捐赠科研通 2534833
什么是DOI,文献DOI怎么找? 1367236
科研通“疑难数据库(出版商)”最低求助积分说明 644974
邀请新用户注册赠送积分活动 618153