高光谱成像
主成分分析
降维
偏最小二乘回归
数学
人工智能
特征(语言学)
图像融合
模式识别(心理学)
计算机科学
图像(数学)
统计
语言学
哲学
标识
DOI:10.1016/j.compag.2022.106822
摘要
The Soluble Solids Content (SSC) of red globe grapes is an important indicator of internal quality. In this paper, 360 red globe grapes in the growing stage were collected as samples and the spectral information and images of the samples were extracted. The Raw spectral (RAW) information was extracted using the one-time dimensionality reduction algorithm (GA, CARS, SPA, UVE) and the combined dimensionality reduction algorithm (CARS-SPA, UVE-SPA) to build the PLSR model of the spectral information. The grey-scale co-occurrence matrix of the image was extracted as the texture feature information of the image and combined with the color information of the image (R, G, B, H, S, V, L, a, b) to form 19 image features to build the PLSR model of the image information. Thus, the PLSR model based on the fusion of hyperspectral image information was built by fusing the spectra extracted with the successive projection algorithm (SPA) feature wavelength and the image information after dimensionality reduction by the principal component analysis algorithm (PCA). The results showed that if only the spectral information was used for modelling, the SPA algorithm effectively extracted the characteristic wavelengths of the red globe grapes of SSC spectral information and improved the prediction performance of the model. If only image information was used for modelling, the PCA algorithm effectively improved the detection performance of the model by dimensionality reduction, but the improved performance was limited. The correlation coefficients of the calibration set and prediction set of the PLSR model were 0.9775 and 0.9762, and the detection effect and stability of the model were greatly improved compared with those built unilaterally based on spectral information or image information, and a new non-destructive detection method was found for the detection about SSC of red globe grapes.
科研通智能强力驱动
Strongly Powered by AbleSci AI