Machine Learning Applications for Chemical Fingerprinting and Environmental Source Tracking Using Non-target Chemical Data

源跟踪 工作流程 样品(材料) 指纹(计算) 环境科学 计算机科学 人工智能 化学 数据库 色谱法 万维网
作者
Emmanuel Dávila-Santiago,Cheng Shi,Gouri Mahadwar,Bridgette Medeghini,Logan Insinga,Rebecca Hutchinson,Stephen P. Good,Gerrad D. Jones
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:56 (7): 4080-4090 被引量:29
标识
DOI:10.1021/acs.est.1c06655
摘要

A frequent goal of chemical forensic analyses is to select a panel of diagnostic chemical features─colloquially termed a chemical fingerprint─that can predict the presence of a source in a novel sample. However, most of the developed chemical fingerprinting workflows are qualitative in nature. Herein, we report on a quantitative machine learning workflow. Grab samples (n = 51) were collected from five chemical sources, including agricultural runoff, headwaters, livestock manure, (sub)urban runoff, and municipal wastewater. Support vector classification was used to select the top 10, 25, 50, and 100 chemical features that best discriminate each source from all others. The cross-validation balanced accuracy was 92-100% for all sources (n = 1,000 iterations). When screening for diagnostic features from each source in samples collected from four local creeks, presence probabilities were low for all sources, except for wastewater at two downstream locations in a single creek. Upon closer investigation, a wastewater treatment facility was located ∼3 km upstream of the nearest sample location. In addition, using simulated in silico mixtures, the workflow can distinguish presence and absence of some sources at 10,000-fold dilutions. These results strongly suggest that this workflow can select diagnostic subsets of chemical features that can be used to quantitatively predict the presence/absence of various sources at trace levels in the environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
木风落发布了新的文献求助10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
ZY发布了新的文献求助10
1秒前
杳鸢应助科研通管家采纳,获得30
1秒前
田様应助科研通管家采纳,获得10
1秒前
西伯利亚狼完成签到,获得积分10
1秒前
1秒前
田様应助科研通管家采纳,获得10
1秒前
多喝水应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得30
2秒前
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
模糊中正应助科研通管家采纳,获得20
2秒前
小黑发布了新的文献求助10
3秒前
TT2022发布了新的文献求助10
3秒前
CC完成签到,获得积分10
3秒前
4秒前
小蘑菇应助球球你了采纳,获得30
5秒前
独特煎蛋完成签到,获得积分10
6秒前
7秒前
9秒前
sherry221完成签到,获得积分10
10秒前
10秒前
李健的小迷弟应助Wang采纳,获得10
11秒前
研友_xnEOX8发布了新的文献求助10
11秒前
12秒前
13秒前
14秒前
14秒前
15秒前
15秒前
xbr完成签到,获得积分10
15秒前
wpz发布了新的文献求助10
15秒前
科研通AI2S应助苗条的冰蓝采纳,获得10
16秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267593
求助须知:如何正确求助?哪些是违规求助? 2907038
关于积分的说明 8340448
捐赠科研通 2577657
什么是DOI,文献DOI怎么找? 1401216
科研通“疑难数据库(出版商)”最低求助积分说明 655005
邀请新用户注册赠送积分活动 633967