Laser powder bed fusion of cemented carbides by developing a new type of Co coated WC composite powder

材料科学 复合数 微观结构 三元运算 复合材料 冶金 相对密度 碳化物 粒度 激光器 物理 计算机科学 光学 程序设计语言
作者
Lei Zhang,Chaoquan Hu,Yafeng Yang,R.D.K. Misra,Katsuyoshi Kondoh,Yanan Lu
出处
期刊:Additive manufacturing [Elsevier]
卷期号:55: 102820-102820 被引量:17
标识
DOI:10.1016/j.addma.2022.102820
摘要

The study addresses the issue of the absence of high-quality WC-Co composite powder for laser powder bed fusion and assessing the printability of the new powder in terms of densification, microstructure and mechanical properties. The fluidized bed chemical vapor deposition (FBCVD) combined with electroless plating process was adopted to make core-shell structured WC-Co composite powder. The excellent uniformity of Co and good powder flowability were achieved by tuning the size and distribution of Co catalyst during FBCVD and regulating their relationship to the subsequent electroless plating behavior. The newly developed composite powder exhibited excellent printability. The densification mechanism was largely dependent on the laser energy density. The liquid formed by the melting of Co was responsible for the densification at low laser energy density, while the Co-W-C ternary liquid resulted from the dissolution of WC into Co melt dominated the densification at high laser energy density. Microstructurally, the morphology and size of WC grains were insignificantly changed because of its non-participation with liquid formation at low laser energy density. The rectangular/triangular WC grain morphology similar to the traditional sintered was formed at high laser energy density because of the precipitation of WC from the Co-W-C ternary liquid. Affected by the different liquid formation processes, increasing laser energy density increased the relative density, promoted the W2C phase formation and decreased WC grain size, which remarkably improved the hardness and tribological properties of the printed cemented carbide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
番茄炒西红柿完成签到,获得积分10
2秒前
无限安蕾完成签到,获得积分10
2秒前
2秒前
飘逸蘑菇发布了新的文献求助10
3秒前
混沌完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
xg发布了新的文献求助10
5秒前
看看发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
Annie完成签到,获得积分10
7秒前
7秒前
通~发布了新的文献求助30
8秒前
8秒前
雨雾发布了新的文献求助10
9秒前
daiyapeng完成签到,获得积分10
9秒前
ivy应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
NN应助科研通管家采纳,获得10
10秒前
36456657应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得30
10秒前
Hello应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
NN应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
11秒前
36456657应助科研通管家采纳,获得10
11秒前
NN应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794