Shelf life predictive model for postharvest shiitake mushrooms

保质期 感官的 单变量 采后 多元统计 多元分析 数学 食品科学 化学 统计 园艺 生物
作者
Yanjie Li,Shudong Ding,Yanxin Wang
出处
期刊:Journal of Food Engineering [Elsevier]
卷期号:330: 111099-111099 被引量:24
标识
DOI:10.1016/j.jfoodeng.2022.111099
摘要

Multivariate Accelerated Shelf-Life Testing (MASLT) and Accelerated Shelf-Life Testing (ASLT) were employed to estimate the shelf-life of postharvest shiitake mushrooms. Weight loss, color, texture profile, phenolic content, malondialdehyde (MDA) content, total aerobic plate count, water status, and organoleptic attributes of shiitake mushrooms stored at 5, 10, or 15 °C for 15 d were determined. Univariate kinetic was used to establish shelf-life prediction using order kinetics combined with Arrhenius and Eyring equations. For the multivariate kinetics, the spatial compression of the dataset was performed via PCA to obtain the scores of the time-dependent components for further shelf-life assessment. The prediction values for 5, 10, and 15 °C storage obtained with univariate models were 13.36–27.75, 7.30–12.26, and 4.53–7.15 d, respectively, whereas the shelf-life estimations of 18.19, 10.56, and 6.21 d obtained with multivariate model agreed the organoleptic scores results better (relative error <20%). Thus, compared to ASLT, the MASLT method successfully provided more accurate estimation of shelf-life for shiitake mushrooms. • Low temperature retarded the deterioration of postharvest shiitake mushrooms. • Accelerated Shelf-life Testing was proposed in this research. • Univariate and Multivariate kinetic models for shelf-life prediction were established. • Univariate kinetic models were established with Arrhenius and Eyring equations. • Multivariate kinetic model was established with high accuracy to predict shelf life.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
2秒前
笨男孩发布了新的文献求助10
2秒前
3秒前
3秒前
wanghao发布了新的文献求助10
3秒前
陈湫完成签到,获得积分10
4秒前
田様应助等待的寒松采纳,获得10
4秒前
害怕的白竹完成签到,获得积分10
5秒前
随心完成签到,获得积分10
5秒前
怕孤单的嚣完成签到,获得积分20
5秒前
lcxw1224完成签到,获得积分10
5秒前
6秒前
长常九久发布了新的文献求助10
7秒前
15503116087发布了新的文献求助10
7秒前
大个应助初之采纳,获得10
8秒前
te发布了新的文献求助10
8秒前
边港洋完成签到,获得积分10
10秒前
10秒前
凤羽发布了新的文献求助10
11秒前
灵巧听露发布了新的文献求助10
11秒前
可爱的函函应助猫猫无敌采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
15秒前
爆米花应助刁弘睿采纳,获得10
15秒前
15秒前
15秒前
缥缈海云完成签到,获得积分10
15秒前
16秒前
斯文败类应助沙场秋点兵采纳,获得10
17秒前
123完成签到,获得积分10
17秒前
18秒前
无辜问玉发布了新的文献求助10
18秒前
18秒前
19秒前
谨慎乐安发布了新的文献求助10
19秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425