A novel top-n recommendation method for multi-criteria collaborative filtering

推荐系统 计算机科学 协同过滤 数据挖掘 熵(时间箭头) 模糊逻辑 过程(计算) 集合(抽象数据类型) 情报检索 人工智能 机器学习 量子力学 操作系统 物理 程序设计语言
作者
Tugba Turkoglu Kaya,Cihan Kaleli
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:198: 116695-116695 被引量:9
标识
DOI:10.1016/j.eswa.2022.116695
摘要

Most online service providers utilize a recommender system to help their customers’ decision making process by producing referrals. If a customer requests a suggestion for a specific item, the recommender systems produce predictions for it. On the other hand, it is also possible to create top-n lists containing the products that the customer might like the most. Recommender systems’ outcomes depend on individuals’ preferences which can be provided by considering a single criterion or multiple criteria about the services or products. Therefore, there must be methods to produce predictions and top-n lists for single and multiple-criteria datasets. Although the researchers introduced several algorithms on single criterion-based ratings for producing single predictions and top-n lists, there are only methods for producing referrals for a specific item on multi-criteria data. Accordingly, this paper proposes an intuitionistic fuzzy set-based top-n recommender system method with a novel neighborhood formation process for multi-criteria datasets. The proposed method consists of two crucial points: (i) Determining the relational structure between products; (ii) Investigating user tendencies, as well as their distinctive structures and rating distributions. The rating distribution and the relational structure between the products are determined with association rule mining and entropy measure, while the attitudes and tendencies of the users during the evaluation are analyzed with intuitionistic fuzzy sets. We also adopt a single-criterion top-n method to a multi-criteria recommender system, and we employ crisp ratings instead of fuzzy ones to compare the performance of the proposed method. The measurements of serendipity, diversity, and novelty are utilized to show how the experimental results are compelling. When the experiments’ results are examined, it is concluded that our method can generate successful top-n lists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tangt发布了新的文献求助20
刚刚
泯珉发布了新的文献求助10
刚刚
小马甲应助无题采纳,获得10
刚刚
不易BY完成签到,获得积分10
刚刚
1秒前
Ava应助包容的惊蛰采纳,获得10
2秒前
2秒前
2秒前
GXL发布了新的文献求助10
2秒前
阿鹿462发布了新的文献求助10
2秒前
子夜完成签到,获得积分10
3秒前
haha完成签到 ,获得积分10
3秒前
GGGUO完成签到,获得积分10
4秒前
QuQ发布了新的文献求助10
5秒前
wwj完成签到,获得积分10
6秒前
6秒前
羊可发布了新的文献求助10
6秒前
11完成签到 ,获得积分10
6秒前
Jasper应助shoplog采纳,获得10
7秒前
执着远山完成签到,获得积分20
7秒前
7秒前
7秒前
Moon完成签到 ,获得积分10
8秒前
8秒前
GXL完成签到,获得积分10
8秒前
活泼的抽屉完成签到,获得积分10
9秒前
wyw完成签到,获得积分10
9秒前
HP发布了新的文献求助10
9秒前
悲凉的英姑完成签到,获得积分10
9秒前
华仔应助空格TNT采纳,获得10
9秒前
王青文完成签到,获得积分10
10秒前
哈哈大王完成签到,获得积分10
10秒前
valt应助江湖小白采纳,获得10
10秒前
曹中明发布了新的文献求助10
10秒前
生物sci完成签到,获得积分10
11秒前
思源应助西音采纳,获得30
11秒前
11秒前
hhhhhhhh完成签到,获得积分10
11秒前
11秒前
江楠酒完成签到,获得积分10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
中成药治疗优势病种临床应用指南 2000
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3447376
求助须知:如何正确求助?哪些是违规求助? 3043281
关于积分的说明 8993087
捐赠科研通 2731551
什么是DOI,文献DOI怎么找? 1498269
科研通“疑难数据库(出版商)”最低求助积分说明 692755
邀请新用户注册赠送积分活动 690500