Enstrophy dissipation of the tip leakage vortex in a multiphase pump

诱捕 消散 涡流 机械 涡度 物理 叶轮 湍流 热力学
作者
Zekui Shu,Guangtai Shi,Yue Dan,Binxin Wang,Tan Xiao
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (3) 被引量:30
标识
DOI:10.1063/5.0082899
摘要

Tip clearance is the distance required between the blade tip and the pump body wall of the impeller in the multiphase pump, of which the resulting tip leakage vortex (TLV) causes unstable flow, leading to energy dissipation. However, only a few studies have been made on the energy dissipation caused by the TLV, and the internal mechanism of energy dissipation has not been revealed. In the present work, enstrophy dissipation theory is innovatively applied to quantitatively study the energy dissipation of the TLV in impeller, to provide guidelines for controlling energy dissipation associated with the TLV, and to optimize the design of the multiphase pump. The location, mode, and energy dissipation rate caused by the TLV are analyzed. The relationship between vorticity and the enstrophy dissipation rate is summarized, and the energy dissipation law is revealed during the inception, development, and dissipation of the TLV. The present analysis indicates that the vorticity is highest at the core of the TLV and gradually weakens along the radial direction with the vortex core at the center; the enstrophy dissipation, however, presented the opposite distribution law. The enstrophy dissipation rate changes as the spatialtemporal evolution of the TLV. The gas phase significantly deteriorates the flow pattern of the TLV, enhances the volume enstrophy dissipation rate, and reduces the wall enstrophy dissipation rate. The volume enstrophy dissipation power increases by 45.33% with an inlet gas void fraction of 10%, the wall enstrophy dissipation power decreases by 23.90%, and the total enstrophy dissipation power increases by 17.21%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
seayoa发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
领导范儿应助懦弱的金鱼采纳,获得10
2秒前
3秒前
3秒前
景__发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
HOLLOW发布了新的文献求助10
6秒前
AteeqBaloch发布了新的文献求助10
6秒前
6秒前
芥末发布了新的文献求助10
7秒前
123发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助seayoa采纳,获得10
9秒前
马大翔应助seayoa采纳,获得10
9秒前
零碎的岛屿完成签到,获得积分10
9秒前
10秒前
xing完成签到,获得积分10
10秒前
天道酬勤发布了新的文献求助10
10秒前
10秒前
华仔应助HOLLOW采纳,获得10
10秒前
10秒前
希望天下0贩的0应助书晨采纳,获得10
11秒前
12秒前
周周发布了新的文献求助10
13秒前
liu星雨发布了新的文献求助10
13秒前
14秒前
大旭发布了新的文献求助10
14秒前
隐形曼青应助超级浩轩采纳,获得10
15秒前
angel发布了新的文献求助30
17秒前
17秒前
无端发布了新的文献求助10
17秒前
neckerzhu完成签到 ,获得积分10
19秒前
烟花应助Liam采纳,获得100
19秒前
Akim应助小刘要加油采纳,获得10
20秒前
20秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129756
求助须知:如何正确求助?哪些是违规求助? 2780520
关于积分的说明 7748718
捐赠科研通 2435880
什么是DOI,文献DOI怎么找? 1294326
科研通“疑难数据库(出版商)”最低求助积分说明 623670
版权声明 600570