Probabilistic Brain Extraction in MR Images via Conditional Generative Adversarial Networks

人工智能 计算机科学 稳健性(进化) 模式识别(心理学) 深度学习 概率逻辑 推论 像素 神经影像学 机器学习 计算机视觉 心理学 生物化学 化学 精神科 基因
作者
Saeed Moazami,Deep Ray,Daniel Pelletier,Assad A. Oberai
标识
DOI:10.1101/2022.03.14.484346
摘要

Abstract Brain extraction, which refers to the task of segmenting brain tissue in an MR image of a subject, forms an essential first step for many quantitative neuroimaging applications. These include quantifying grey and white matter volumes, monitoring neurological diseases like multiple sclerosis (MS) and Alzheimer’s disease, and estimating brain atrophy. Over the years several algorithms that automate brain extraction have been proposed. More recently, novel image-to-image deep learning methods have been implemented for this task, and have demonstrated significant gains in accuracy and robustness. However, to our knowledge, none of these algorithms account for the uncertainty that is inherent in brain extraction. Motivated by this, we propose a novel, probabilistic deep learning algorithm for brain extraction that recasts this task as a Bayesian inference problem, and then utilizes a conditional generative adversarial network (cGAN) to solve it. The input to the generator network is an MR image of the head and the output is a collection of images of the brain that are drawn from a probability density conditioned on the input image. These images are used to generate a pixel-wise mean image, which serves as the best guess for an image of the brain, and a pixel-wise standard deviation image, which quantifies the uncertainty in the prediction. We test this algorithm on head MR images of fifty subjects and demonstrate that it is more accurate than a commonly used brain extraction tool, and that its performance compares well with the current state of the art in deep learning algorithms. We also demonstrate the utility of the estimates of uncertainty generated by the algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助忧郁绣连采纳,获得10
1秒前
1秒前
3秒前
4秒前
十一发布了新的文献求助10
4秒前
可靠的青槐完成签到,获得积分10
5秒前
7秒前
7秒前
甜甜发布了新的文献求助10
7秒前
calm发布了新的文献求助10
10秒前
十一完成签到,获得积分10
10秒前
Cwx2020发布了新的文献求助10
10秒前
Jasper应助gxh66采纳,获得10
12秒前
鬼才之眼完成签到,获得积分10
13秒前
Fury发布了新的文献求助10
14秒前
ccq发布了新的文献求助10
14秒前
yanxueyi完成签到 ,获得积分10
15秒前
清醒完成签到,获得积分10
17秒前
共享精神应助wang采纳,获得10
18秒前
19秒前
20秒前
20秒前
calm完成签到,获得积分20
21秒前
24秒前
24秒前
quanjia发布了新的文献求助10
25秒前
啦啦啦发布了新的文献求助10
25秒前
27秒前
28秒前
28秒前
巫马小霜发布了新的文献求助20
30秒前
wang发布了新的文献求助10
31秒前
布洛芬发布了新的文献求助10
32秒前
Singularity应助甜甜采纳,获得10
33秒前
bestbanana发布了新的文献求助10
33秒前
刻苦小丸子完成签到,获得积分10
33秒前
wnche完成签到,获得积分10
34秒前
上官若男应助爱睡午觉采纳,获得10
34秒前
万能图书馆应助清醒采纳,获得10
35秒前
和谐小南完成签到,获得积分10
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137539
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7787114
捐赠科研通 2444837
什么是DOI,文献DOI怎么找? 1300071
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023