Probabilistic Brain Extraction in MR Images via Conditional Generative Adversarial Networks

人工智能 计算机科学 稳健性(进化) 模式识别(心理学) 深度学习 概率逻辑 推论 像素 神经影像学 机器学习 计算机视觉 心理学 生物化学 化学 精神科 基因
作者
Saeed Moazami,Deep Ray,Daniel Pelletier,Assad A. Oberai
标识
DOI:10.1101/2022.03.14.484346
摘要

Abstract Brain extraction, which refers to the task of segmenting brain tissue in an MR image of a subject, forms an essential first step for many quantitative neuroimaging applications. These include quantifying grey and white matter volumes, monitoring neurological diseases like multiple sclerosis (MS) and Alzheimer’s disease, and estimating brain atrophy. Over the years several algorithms that automate brain extraction have been proposed. More recently, novel image-to-image deep learning methods have been implemented for this task, and have demonstrated significant gains in accuracy and robustness. However, to our knowledge, none of these algorithms account for the uncertainty that is inherent in brain extraction. Motivated by this, we propose a novel, probabilistic deep learning algorithm for brain extraction that recasts this task as a Bayesian inference problem, and then utilizes a conditional generative adversarial network (cGAN) to solve it. The input to the generator network is an MR image of the head and the output is a collection of images of the brain that are drawn from a probability density conditioned on the input image. These images are used to generate a pixel-wise mean image, which serves as the best guess for an image of the brain, and a pixel-wise standard deviation image, which quantifies the uncertainty in the prediction. We test this algorithm on head MR images of fifty subjects and demonstrate that it is more accurate than a commonly used brain extraction tool, and that its performance compares well with the current state of the art in deep learning algorithms. We also demonstrate the utility of the estimates of uncertainty generated by the algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gilana完成签到,获得积分10
1秒前
czcz完成签到,获得积分10
2秒前
二傻发布了新的文献求助10
2秒前
迷你的百川完成签到,获得积分10
3秒前
3秒前
3秒前
虚幻的凤完成签到,获得积分10
3秒前
fengyi2999完成签到,获得积分10
4秒前
小杨发布了新的文献求助10
4秒前
情怀应助LI电池采纳,获得10
4秒前
菜系完成签到,获得积分10
5秒前
陈淑玲完成签到,获得积分10
5秒前
5秒前
樊小胖完成签到,获得积分10
5秒前
Pothos完成签到,获得积分10
6秒前
月明完成签到,获得积分10
6秒前
6秒前
ning_qing完成签到 ,获得积分10
7秒前
Jasper应助ssaws采纳,获得10
7秒前
七怪完成签到,获得积分20
7秒前
jia完成签到,获得积分10
7秒前
7秒前
8秒前
小迪迦奥特曼完成签到,获得积分10
8秒前
8秒前
点点完成签到,获得积分10
9秒前
吹泡泡的红豆完成签到 ,获得积分10
9秒前
TCB完成签到,获得积分10
10秒前
好的发布了新的文献求助10
10秒前
无死何能生新颜完成签到,获得积分10
10秒前
七怪发布了新的文献求助10
10秒前
orixero应助南山无梅落采纳,获得10
11秒前
学者风范完成签到 ,获得积分10
11秒前
wwj1009完成签到 ,获得积分10
11秒前
党弛完成签到,获得积分10
11秒前
12秒前
昏睡的蟠桃应助阳光怀亦采纳,获得100
13秒前
风中的小丸子完成签到,获得积分10
13秒前
2323完成签到,获得积分10
14秒前
蘑菇屋完成签到 ,获得积分10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009044
求助须知:如何正确求助?哪些是违规求助? 3548827
关于积分的说明 11300025
捐赠科研通 3283345
什么是DOI,文献DOI怎么找? 1810345
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259