亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mapping the distribution of invasive tree species using deep one-class classification in the tropical montane landscape of Kenya

山地生态 地理 分布(数学) 热带 树(集合论) 空间分布 班级(哲学) 热带森林 生态学 地图学 遥感 自然地理学 人工智能 生物 计算机科学 数学 数学分析
作者
Hengwei Zhao,Yanfei Zhong,Xinyu Wang,Xin Hu,Chang Luo,Mark Boitt,Rami Piiroinen,Liangpei Zhang,Janne Heiskanen,Petri Pellikka
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:187: 328-344 被引量:36
标识
DOI:10.1016/j.isprsjprs.2022.03.005
摘要

Some invasive tree species threaten biodiversity and cause irreversible damage to global ecosystems. The key to controlling and monitoring the propagation of invasive tree species is to detect their occurrence as early as possible. In this regard, one-class classification (OCC) shows potential in forest areas with abundant species richness since it only requires a few positive samples of the invasive tree species to be mapped, instead of all the species. However, the classical OCC method in remote sensing is heavily dependent on manually designed features, which have a limited ability in areas with complex species distributions. Deep learning based tree species classification methods mostly focus on multi-class classification, and there have been few studies of the deep OCC of tree species. In this paper, a deep positive and unlabeled learning based OCC framework—ITreeDet—is proposed for identifying the invasive tree species of Eucalyptus spp. (eucalyptus) and Acacia mearnsii (black wattle) in the Taita Hills of southern Kenya. In the ITreeDet framework, an absNegative risk estimator is designed to train a robust deep OCC model by fully using the massive unlabeled data. Compared with the state-of-the-art OCC methods, ITreeDet represents a great improvement in detection accuracy, and the F1-score was 0.86 and 0.70 for eucalyptus and black wattle, respectively. The study area covers 100 km2 of the Taita Hills, where, according to our findings, the total area of eucalyptus and black wattle is 1.61 km2 and 3.24 km2, respectively, which represent 6.78% and 13.65% of the area covered by trees and forest. In addition, both invasive tree species are located in the higher elevations, and the extensive spread of black wattle around the study area confirms its invasive tendency. The maps generated by the use of the proposed algorithm will help local government to develop management strategies for these two invasive species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
今后应助MM采纳,获得10
4秒前
tdtk发布了新的文献求助10
6秒前
jerry完成签到,获得积分10
7秒前
叮叮发布了新的文献求助10
7秒前
大模型应助tdtk采纳,获得10
14秒前
共享精神应助tdtk采纳,获得10
14秒前
Pt完成签到,获得积分10
18秒前
18秒前
都会完成签到 ,获得积分10
21秒前
CodeCraft应助lishihao采纳,获得10
22秒前
杨振完成签到,获得积分10
25秒前
皮皮蟹完成签到,获得积分10
25秒前
852应助莫大采纳,获得10
25秒前
qianchimo完成签到 ,获得积分10
28秒前
hxhxhxhx完成签到,获得积分10
28秒前
史前巨怪完成签到,获得积分10
29秒前
852应助hxhxhxhx采纳,获得10
33秒前
莫大发布了新的文献求助10
39秒前
40秒前
执着的怜珊完成签到,获得积分10
41秒前
细腻的雅山完成签到 ,获得积分10
43秒前
45秒前
皮皮蟹发布了新的文献求助20
46秒前
dyy完成签到 ,获得积分10
47秒前
48秒前
48秒前
52秒前
53秒前
Han完成签到,获得积分10
53秒前
滑稽剑客发布了新的文献求助10
54秒前
FEI发布了新的文献求助10
56秒前
Han发布了新的文献求助30
58秒前
tdtk发布了新的文献求助10
1分钟前
滑稽剑客完成签到,获得积分10
1分钟前
勤恳天寿完成签到 ,获得积分10
1分钟前
1分钟前
SciGPT应助半城烟火采纳,获得10
1分钟前
hxhxhxhx发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3758087
求助须知:如何正确求助?哪些是违规求助? 3301027
关于积分的说明 10116091
捐赠科研通 3015484
什么是DOI,文献DOI怎么找? 1656142
邀请新用户注册赠送积分活动 790234
科研通“疑难数据库(出版商)”最低求助积分说明 753754