Mapping the distribution of invasive tree species using deep one-class classification in the tropical montane landscape of Kenya

山地生态 地理 分布(数学) 热带 树(集合论) 空间分布 班级(哲学) 热带森林 生态学 地图学 遥感 自然地理学 人工智能 生物 计算机科学 数学 数学分析
作者
Hengwei Zhao,Yanfei Zhong,Xinyu Wang,Xin Hu,Chang Luo,Mark Boitt,Rami Piiroinen,Liangpei Zhang,Janne Heiskanen,Petri Pellikka
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:187: 328-344 被引量:22
标识
DOI:10.1016/j.isprsjprs.2022.03.005
摘要

Some invasive tree species threaten biodiversity and cause irreversible damage to global ecosystems. The key to controlling and monitoring the propagation of invasive tree species is to detect their occurrence as early as possible. In this regard, one-class classification (OCC) shows potential in forest areas with abundant species richness since it only requires a few positive samples of the invasive tree species to be mapped, instead of all the species. However, the classical OCC method in remote sensing is heavily dependent on manually designed features, which have a limited ability in areas with complex species distributions. Deep learning based tree species classification methods mostly focus on multi-class classification, and there have been few studies of the deep OCC of tree species. In this paper, a deep positive and unlabeled learning based OCC framework—ITreeDet—is proposed for identifying the invasive tree species of Eucalyptus spp. (eucalyptus) and Acacia mearnsii (black wattle) in the Taita Hills of southern Kenya. In the ITreeDet framework, an absNegative risk estimator is designed to train a robust deep OCC model by fully using the massive unlabeled data. Compared with the state-of-the-art OCC methods, ITreeDet represents a great improvement in detection accuracy, and the F1-score was 0.86 and 0.70 for eucalyptus and black wattle, respectively. The study area covers 100 km2 of the Taita Hills, where, according to our findings, the total area of eucalyptus and black wattle is 1.61 km2 and 3.24 km2, respectively, which represent 6.78% and 13.65% of the area covered by trees and forest. In addition, both invasive tree species are located in the higher elevations, and the extensive spread of black wattle around the study area confirms its invasive tendency. The maps generated by the use of the proposed algorithm will help local government to develop management strategies for these two invasive species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打翻了一罐温柔完成签到,获得积分10
1秒前
1秒前
情怀应助妮妮你采纳,获得10
1秒前
LLLLLL发布了新的文献求助10
2秒前
2024_08_09完成签到,获得积分20
2秒前
3秒前
含蓄延恶发布了新的文献求助10
3秒前
伈X发布了新的文献求助30
3秒前
舒心宛白完成签到 ,获得积分10
3秒前
hyx完成签到,获得积分10
3秒前
菠萝肉完成签到,获得积分10
4秒前
丘比特应助天天采纳,获得10
5秒前
小熊发布了新的文献求助10
6秒前
JamesPei应助在郑州采纳,获得10
7秒前
7秒前
布莱橙完成签到,获得积分10
8秒前
傲娇的小天鹅完成签到 ,获得积分10
8秒前
rrrrr发布了新的文献求助10
8秒前
hyx发布了新的文献求助10
9秒前
9秒前
倪吉旭完成签到,获得积分10
9秒前
奇奇发布了新的文献求助10
10秒前
阿狸a发布了新的文献求助30
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
研友_O8WK48完成签到,获得积分10
12秒前
昨夜書完成签到 ,获得积分10
12秒前
cherishT完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
可爱的函函应助cherrychou采纳,获得10
14秒前
14秒前
上官若男应助二三采纳,获得10
15秒前
15秒前
妮妮你发布了新的文献求助10
15秒前
揍鱼发布了新的文献求助10
15秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156848
求助须知:如何正确求助?哪些是违规求助? 2808269
关于积分的说明 7877026
捐赠科研通 2466691
什么是DOI,文献DOI怎么找? 1312998
科研通“疑难数据库(出版商)”最低求助积分说明 630334
版权声明 601919