Mapping the distribution of invasive tree species using deep one-class classification in the tropical montane landscape of Kenya

山地生态 地理 分布(数学) 热带 树(集合论) 空间分布 班级(哲学) 热带森林 生态学 地图学 遥感 自然地理学 人工智能 生物 计算机科学 数学 数学分析
作者
Hengwei Zhao,Yanfei Zhong,Xinyu Wang,Xin Hu,Chang Luo,Mark Boitt,Rami Piiroinen,Liangpei Zhang,Janne Heiskanen,Petri Pellikka
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:187: 328-344 被引量:36
标识
DOI:10.1016/j.isprsjprs.2022.03.005
摘要

Some invasive tree species threaten biodiversity and cause irreversible damage to global ecosystems. The key to controlling and monitoring the propagation of invasive tree species is to detect their occurrence as early as possible. In this regard, one-class classification (OCC) shows potential in forest areas with abundant species richness since it only requires a few positive samples of the invasive tree species to be mapped, instead of all the species. However, the classical OCC method in remote sensing is heavily dependent on manually designed features, which have a limited ability in areas with complex species distributions. Deep learning based tree species classification methods mostly focus on multi-class classification, and there have been few studies of the deep OCC of tree species. In this paper, a deep positive and unlabeled learning based OCC framework—ITreeDet—is proposed for identifying the invasive tree species of Eucalyptus spp. (eucalyptus) and Acacia mearnsii (black wattle) in the Taita Hills of southern Kenya. In the ITreeDet framework, an absNegative risk estimator is designed to train a robust deep OCC model by fully using the massive unlabeled data. Compared with the state-of-the-art OCC methods, ITreeDet represents a great improvement in detection accuracy, and the F1-score was 0.86 and 0.70 for eucalyptus and black wattle, respectively. The study area covers 100 km2 of the Taita Hills, where, according to our findings, the total area of eucalyptus and black wattle is 1.61 km2 and 3.24 km2, respectively, which represent 6.78% and 13.65% of the area covered by trees and forest. In addition, both invasive tree species are located in the higher elevations, and the extensive spread of black wattle around the study area confirms its invasive tendency. The maps generated by the use of the proposed algorithm will help local government to develop management strategies for these two invasive species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gry完成签到,获得积分10
1秒前
1秒前
科研通AI5应助夏夏采纳,获得10
2秒前
LU完成签到 ,获得积分10
2秒前
zky0216发布了新的文献求助10
3秒前
Kin_L完成签到,获得积分10
3秒前
4秒前
一一发布了新的文献求助10
4秒前
丙队长发布了新的文献求助10
5秒前
舒适行天完成签到,获得积分10
5秒前
善学以致用应助wuyudelan采纳,获得10
7秒前
zky0216完成签到,获得积分10
7秒前
8秒前
毛豆爸爸发布了新的文献求助10
10秒前
坦率的丹烟完成签到 ,获得积分10
10秒前
风趣的梦露完成签到 ,获得积分10
10秒前
认真的南珍完成签到 ,获得积分20
11秒前
12秒前
13秒前
林森发布了新的文献求助10
15秒前
15秒前
那里有颗星星完成签到,获得积分10
15秒前
丙队长完成签到,获得积分10
16秒前
酷炫蚂蚁完成签到,获得积分20
17秒前
17秒前
科研通AI5应助叶子采纳,获得10
17秒前
感激不尽完成签到,获得积分10
17秒前
wuyudelan完成签到,获得积分10
18秒前
zstyry9998完成签到,获得积分10
20秒前
RH发布了新的文献求助10
20秒前
冷傲迎梦发布了新的文献求助10
20秒前
22秒前
weiv完成签到,获得积分10
24秒前
Teslwang完成签到,获得积分10
24秒前
24秒前
24秒前
zhangzhen发布了新的文献求助10
24秒前
英姑应助彬彬采纳,获得10
25秒前
传奇3应助maomao采纳,获得10
27秒前
稀罕你发布了新的文献求助10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824