Mapping the distribution of invasive tree species using deep one-class classification in the tropical montane landscape of Kenya

山地生态 地理 分布(数学) 热带 树(集合论) 空间分布 班级(哲学) 热带森林 生态学 地图学 遥感 自然地理学 人工智能 生物 计算机科学 数学 数学分析
作者
Hengwei Zhao,Yanfei Zhong,Xinyu Wang,Xin Hu,Chang Luo,Mark Boitt,Rami Piiroinen,Liangpei Zhang,Janne Heiskanen,Petri Pellikka
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:187: 328-344 被引量:36
标识
DOI:10.1016/j.isprsjprs.2022.03.005
摘要

Some invasive tree species threaten biodiversity and cause irreversible damage to global ecosystems. The key to controlling and monitoring the propagation of invasive tree species is to detect their occurrence as early as possible. In this regard, one-class classification (OCC) shows potential in forest areas with abundant species richness since it only requires a few positive samples of the invasive tree species to be mapped, instead of all the species. However, the classical OCC method in remote sensing is heavily dependent on manually designed features, which have a limited ability in areas with complex species distributions. Deep learning based tree species classification methods mostly focus on multi-class classification, and there have been few studies of the deep OCC of tree species. In this paper, a deep positive and unlabeled learning based OCC framework—ITreeDet—is proposed for identifying the invasive tree species of Eucalyptus spp. (eucalyptus) and Acacia mearnsii (black wattle) in the Taita Hills of southern Kenya. In the ITreeDet framework, an absNegative risk estimator is designed to train a robust deep OCC model by fully using the massive unlabeled data. Compared with the state-of-the-art OCC methods, ITreeDet represents a great improvement in detection accuracy, and the F1-score was 0.86 and 0.70 for eucalyptus and black wattle, respectively. The study area covers 100 km2 of the Taita Hills, where, according to our findings, the total area of eucalyptus and black wattle is 1.61 km2 and 3.24 km2, respectively, which represent 6.78% and 13.65% of the area covered by trees and forest. In addition, both invasive tree species are located in the higher elevations, and the extensive spread of black wattle around the study area confirms its invasive tendency. The maps generated by the use of the proposed algorithm will help local government to develop management strategies for these two invasive species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33发布了新的文献求助10
刚刚
刚刚
3秒前
4秒前
搜集达人应助33采纳,获得10
4秒前
Alina完成签到 ,获得积分10
6秒前
奋斗清炎发布了新的文献求助10
6秒前
Atlantic发布了新的文献求助10
6秒前
7秒前
7秒前
9秒前
追寻雨发布了新的文献求助10
9秒前
xiongdi521发布了新的文献求助10
9秒前
11秒前
11秒前
xly发布了新的文献求助10
13秒前
阚曦发布了新的文献求助10
14秒前
望断椿岁发布了新的文献求助20
14秒前
15秒前
15秒前
Bear完成签到 ,获得积分10
17秒前
QF发布了新的文献求助10
18秒前
温柔寒梅完成签到 ,获得积分10
19秒前
追寻雨完成签到,获得积分10
19秒前
20秒前
WWshu应助豆豆采纳,获得10
22秒前
22秒前
共享精神应助spc采纳,获得10
22秒前
叶子完成签到,获得积分10
23秒前
核桃应助secret采纳,获得10
23秒前
等待的若云完成签到,获得积分10
24秒前
归尘发布了新的文献求助10
24秒前
24秒前
24秒前
25秒前
希捷方向发布了新的文献求助10
26秒前
27秒前
英姑应助现代雪晴采纳,获得10
27秒前
xiongdi521完成签到,获得积分10
27秒前
28秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962070
求助须知:如何正确求助?哪些是违规求助? 3508372
关于积分的说明 11140413
捐赠科研通 3240967
什么是DOI,文献DOI怎么找? 1791157
邀请新用户注册赠送积分活动 872793
科研通“疑难数据库(出版商)”最低求助积分说明 803371