已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Bi-CLKT: Bi-Graph Contrastive Learning based Knowledge Tracing

计算机科学 判别式 图形 人工智能 追踪 机器学习 特征学习 深度学习 自然语言处理 理论计算机科学 操作系统
作者
Xiangyu Song,Jianxin Li,Qi Lei,Wei Zhao,Yunliang Chen,Ajmal Mian
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:241: 108274-108274 被引量:176
标识
DOI:10.1016/j.knosys.2022.108274
摘要

The goal of Knowledge Tracing (KT) is to estimate how well students have mastered a concept based on their historical learning of related exercises. The benefit of knowledge tracing is that students’ learning plans can be better organised and adjusted, and interventions can be made when necessary. With the recent rise of deep learning, Deep Knowledge Tracing (DKT) has utilised Recurrent Neural Networks (RNNs) to accomplish this task with some success. Other works have attempted to introduce Graph Neural Networks (GNNs) and redefine the task accordingly to achieve significant improvements. However, these efforts suffer from at least one of the following drawbacks: (1) they pay too much attention to details of the nodes rather than to high-level semantic information; (2) they struggle to effectively establish spatial associations and complex structures of the nodes; and (3) they represent either concepts or exercises only, without integrating them. Inspired by recent advances in self-supervised learning, we propose a Bi-Graph Contrastive Learning based Knowledge Tracing (Bi-CLKT) to address these limitations. Specifically, we design a two-layer comparative learning scheme based on an “exercise-to-exercise” (E2E) relational subgraph. It involves node-level contrastive learning of subgraphs to obtain discriminative representations of exercises, and graph-level contrastive learning to obtain discriminative representations of concepts. Moreover, we designed a joint contrastive loss to obtain better representations and hence better prediction performance. Also, we explored two different variants, using RNN and memory-augmented neural networks as the prediction layer for comparison to obtain better representations of exercises and concepts respectively. Extensive experiments on four real-world datasets show that the proposed Bi-CLKT and its variants outperform other baseline models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
bkagyin应助fang采纳,获得10
3秒前
所所应助fang采纳,获得10
3秒前
曾经小伙发布了新的文献求助10
5秒前
张振宇完成签到 ,获得积分10
6秒前
7秒前
闪闪的妙竹完成签到 ,获得积分10
7秒前
情怀应助Vancy采纳,获得10
8秒前
10秒前
希希完成签到 ,获得积分10
10秒前
10秒前
小啊三发布了新的文献求助10
12秒前
桐桐发布了新的文献求助40
13秒前
路宝发布了新的文献求助10
14秒前
15秒前
搜集达人应助楚文强采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
19秒前
今后应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
20秒前
竹筏过海应助科研通管家采纳,获得30
20秒前
慕青应助科研通管家采纳,获得10
20秒前
嫑嫑应助科研通管家采纳,获得20
20秒前
竹筏过海应助科研通管家采纳,获得30
20秒前
20秒前
竹筏过海应助科研通管家采纳,获得30
20秒前
21秒前
22秒前
24秒前
星河发布了新的文献求助10
24秒前
十二完成签到 ,获得积分10
24秒前
25秒前
六初完成签到 ,获得积分10
26秒前
江河发布了新的文献求助10
26秒前
27秒前
Vancy发布了新的文献求助10
28秒前
FashionBoy应助小啊三采纳,获得10
28秒前
积极的香菇完成签到 ,获得积分10
29秒前
FG发布了新的文献求助10
30秒前
34秒前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3417333
求助须知:如何正确求助?哪些是违规求助? 3018956
关于积分的说明 8886126
捐赠科研通 2706477
什么是DOI,文献DOI怎么找? 1484297
科研通“疑难数据库(出版商)”最低求助积分说明 685955
邀请新用户注册赠送积分活动 681110