BERT6mA: prediction of DNA N6-methyladenine site using deep learning-based approaches

计算机科学 水准点(测量) 补语(音乐) 深度学习 人工智能 源代码 样品(材料) DNA 机器学习 计算生物学 数据挖掘 生物 基因 遗传学 化学 大地测量学 色谱法 表型 操作系统 互补 地理
作者
Sho Tsukiyama,Md. Mehedi Hasan,Hong‐Wen Deng,Hiroyuki Kurata
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (2) 被引量:18
标识
DOI:10.1093/bib/bbac053
摘要

N6-methyladenine (6mA) is associated with important roles in DNA replication, DNA repair, transcription, regulation of gene expression. Several experimental methods were used to identify DNA modifications. However, these experimental methods are costly and time-consuming. To detect the 6mA and complement these shortcomings of experimental methods, we proposed a novel, deep leaning approach called BERT6mA. To compare the BERT6mA with other deep learning approaches, we used the benchmark datasets including 11 species. The BERT6mA presented the highest AUCs in eight species in independent tests. Furthermore, BERT6mA showed higher and comparable performance with the state-of-the-art models while the BERT6mA showed poor performances in a few species with a small sample size. To overcome this issue, pretraining and fine-tuning between two species were applied to the BERT6mA. The pretrained and fine-tuned models on specific species presented higher performances than other models even for the species with a small sample size. In addition to the prediction, we analyzed the attention weights generated by BERT6mA to reveal how the BERT6mA model extracts critical features responsible for the 6mA prediction. To facilitate biological sciences, the BERT6mA online web server and its source codes are freely accessible at https://github.com/kuratahiroyuki/BERT6mA.git, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
新小pi应助踏实的幻珊采纳,获得10
1秒前
蔷薇完成签到,获得积分10
1秒前
香蕉觅云应助里里采纳,获得10
2秒前
bible完成签到,获得积分10
2秒前
YQ发布了新的文献求助10
2秒前
2秒前
霸气向秋发布了新的文献求助10
4秒前
congguitar完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
leozhao发布了新的文献求助10
8秒前
大锤应助复杂千雁采纳,获得10
9秒前
橙子发布了新的文献求助10
9秒前
风中的夕阳完成签到,获得积分10
10秒前
光亮的灭绝完成签到 ,获得积分10
10秒前
50257055发布了新的文献求助10
10秒前
朱朱发布了新的文献求助10
11秒前
斯文败类应助暮凝采纳,获得20
11秒前
糊涂的松慈完成签到,获得积分10
12秒前
wujun发布了新的文献求助10
12秒前
爱喝酸奶的天真完成签到,获得积分10
14秒前
专注完成签到,获得积分10
15秒前
赘婿应助YQ采纳,获得10
17秒前
研友_VZG7GZ应助鑫叶采纳,获得10
18秒前
JamesPei应助端庄的香薇采纳,获得10
19秒前
cc发布了新的文献求助10
20秒前
茜茜完成签到,获得积分10
20秒前
lk、发布了新的文献求助30
20秒前
123发布了新的文献求助10
21秒前
852应助朱朱采纳,获得10
22秒前
leozhao完成签到,获得积分10
22秒前
小胖完成签到 ,获得积分10
22秒前
大方的若山应助zxvcbnm采纳,获得10
23秒前
23秒前
李健应助风中的夕阳采纳,获得10
24秒前
阿达完成签到,获得积分10
25秒前
owlhealth完成签到,获得积分10
26秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138255
求助须知:如何正确求助?哪些是违规求助? 2789256
关于积分的说明 7790627
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300583
科研通“疑难数据库(出版商)”最低求助积分说明 625969
版权声明 601053