BERT6mA: prediction of DNA N6-methyladenine site using deep learning-based approaches

计算机科学 水准点(测量) 补语(音乐) 深度学习 人工智能 源代码 样品(材料) DNA 机器学习 计算生物学 数据挖掘 生物 基因 遗传学 化学 大地测量学 色谱法 表型 操作系统 互补 地理
作者
Sho Tsukiyama,Md. Mehedi Hasan,Hong‐Wen Deng,Hiroyuki Kurata
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (2) 被引量:18
标识
DOI:10.1093/bib/bbac053
摘要

N6-methyladenine (6mA) is associated with important roles in DNA replication, DNA repair, transcription, regulation of gene expression. Several experimental methods were used to identify DNA modifications. However, these experimental methods are costly and time-consuming. To detect the 6mA and complement these shortcomings of experimental methods, we proposed a novel, deep leaning approach called BERT6mA. To compare the BERT6mA with other deep learning approaches, we used the benchmark datasets including 11 species. The BERT6mA presented the highest AUCs in eight species in independent tests. Furthermore, BERT6mA showed higher and comparable performance with the state-of-the-art models while the BERT6mA showed poor performances in a few species with a small sample size. To overcome this issue, pretraining and fine-tuning between two species were applied to the BERT6mA. The pretrained and fine-tuned models on specific species presented higher performances than other models even for the species with a small sample size. In addition to the prediction, we analyzed the attention weights generated by BERT6mA to reveal how the BERT6mA model extracts critical features responsible for the 6mA prediction. To facilitate biological sciences, the BERT6mA online web server and its source codes are freely accessible at https://github.com/kuratahiroyuki/BERT6mA.git, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
XCHI发布了新的文献求助10
1秒前
汉堡包应助半柚采纳,获得10
4秒前
10发布了新的文献求助10
4秒前
牛奶牛奶发布了新的文献求助10
4秒前
俗签发布了新的文献求助10
4秒前
上官若男应助Yukaze采纳,获得10
5秒前
完美世界应助2021采纳,获得10
5秒前
minrui发布了新的文献求助20
5秒前
6秒前
直率芸遥发布了新的文献求助10
8秒前
可爱的函函应助NMZN采纳,获得10
8秒前
王羲之完成签到,获得积分0
10秒前
jun_shen完成签到,获得积分20
10秒前
hhh发布了新的文献求助10
11秒前
12秒前
英姑应助小白白采纳,获得10
13秒前
慕青应助潇洒飞丹采纳,获得10
13秒前
思源应助郑zhenglanyou采纳,获得10
14秒前
琳琳关注了科研通微信公众号
14秒前
shutong完成签到,获得积分10
14秒前
小二郎应助大气的山彤采纳,获得10
15秒前
15秒前
16秒前
17秒前
唯梦发布了新的文献求助10
18秒前
2021发布了新的文献求助10
18秒前
wu8577应助怎么说采纳,获得10
18秒前
量子星尘发布了新的文献求助80
19秒前
19秒前
20秒前
酷波er应助计时器响了采纳,获得10
20秒前
斯文败类应助苏邑采纳,获得10
20秒前
21秒前
21秒前
21秒前
Yukaze发布了新的文献求助10
21秒前
扎心应助lianqing采纳,获得10
23秒前
今后应助大气的山彤采纳,获得10
23秒前
impulsive完成签到,获得积分20
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956275
求助须知:如何正确求助?哪些是违规求助? 3502464
关于积分的说明 11107805
捐赠科研通 3233133
什么是DOI,文献DOI怎么找? 1787170
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802093