ABCG1公司
ABCA1
泡沫电池
脂肪组织
下调和上调
化学
流出
细胞生物学
运输机
转染
胆固醇
巨噬细胞
生物
生物化学
脂蛋白
体外
基因
作者
Yan Liu,Yan Sun,Xuze Lin,Dai Zhang,Chengping Hu,Jinxing Liu,Yong Zhu,Ang Gao,Hongya Han,Meng Chai,Jianwei Zhang,Yingxin Zhao,Yujie Zhou
标识
DOI:10.1016/j.vph.2022.106968
摘要
Background Perivascular adipose tissue (PVAT) releases exosomes (EXOs) to regulate vascular homeostasis. PVAT-derived EXOs reduce macrophage foam cell formation, but the underlying molecular mechanism has yet to be fully elucidated. We hypothesize that PVAT release miRNA through EXOs and regulate the expression of cholesterol transporter of macrophages, thereby reducing foam cell formation. Methods and results Through RT-qPCR, we identified that miR-382-5p, which was expressed at lower levels in PVAT-EXOs from coronary atherosclerotic heart disease patients than healthy individuals, was expressed at higher levels in wild-type C57BL/6 J mouse aortic PVAT-EXOs than in subcutaneous adipose tissue-derived EXOs. We explored macrophage lipid accumulation through oil red O staining, assessed cholesterol uptake and efflux, and verified cholesterol transporter expression. We found that transfection with a miR-382-5p inhibitor offset PVAT-EXO-related reductions in macrophage foam cell formation and increases in cholesterol efflux mediated by ATP-binding cassette transporter A1 (ABCA1) and ATP-binding cassette transporter G1 (ABCG1). In addition, bone morphogenetic protein 4 (BMP4) pretreatment and si-peroxisome proliferator-activated receptor γ (PPARγ) transfection showed that BMP4-PPARγ participated in PVAT-EXO-mediated upregulation of the cholesterol efflux transporters ABCA1 and ABCG1. Conclusions PVAT-EXOs reduce macrophage foam cell formation through miR-382-5p- and BMP4-PPARγ-mediated upregulation of the cholesterol efflux transporters ABCA1 and ABCG1. This finding suggests a promising strategy for the prevention and treatment of atherosclerosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI