Adaptive Spatio-temporal Graph Neural Network for traffic forecasting

计算机科学 可解释性 图形 邻接矩阵 邻接表 数据挖掘 人工智能 理论计算机科学 机器学习 算法
作者
Xuxiang Ta,Zihan Liu,Xiao Hu,Le Yu,Leilei Sun,Bowen Du
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:242: 108199-108199 被引量:107
标识
DOI:10.1016/j.knosys.2022.108199
摘要

Accurate traffic forecasting is of vital importance for the management and decision in intelligent transportation systems. Indeed, it is a nontrivial endeavor to predict future traffic conditions due to the complexity of spatial relationships and temporal dependencies. Recent research developed Spatio-Temporal Graph Neural Networks (ST-GNNs) to capture the spatio-temporal correlations and achieved superior performance. However, the graph adjacency matrices that most ST-GNNs use are either pre-defined by heuristic rules or directly learned with trainable parameters. While node attributes, which record valuable information of traffic conditions, have not been fully exploited to guide the learning of better graph structure. In this paper, we propose an Adaptive Spatio-Temporal graph neural Network, namely Ada-STNet, to first derive optimal graph structure with the guidance of node attributes and then capture the complicated spatio-temporal correlations via a dedicated spatio-temporal convolution architecture for multi-step traffic condition forecasting. Specifically, we first propose a graph structure learning component to obtain an optimal graph adjacency matrix from both macro and micro perspectives. Next, we design a dedicated spatio-temporal convolution architecture to learn spatial relationships and temporal dependencies. Moreover, we present a two-stage training strategy to improve the model performance. Extensive experimental results on real-world datasets demonstrate the effectiveness and interpretability of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
坚强嚣完成签到,获得积分20
4秒前
fuws发布了新的文献求助10
4秒前
5秒前
5秒前
水清木华完成签到,获得积分10
6秒前
天天快乐应助大力的忆霜采纳,获得10
7秒前
要笑发布了新的文献求助10
9秒前
bailulu发布了新的文献求助10
10秒前
pan发布了新的文献求助10
10秒前
大模型应助冰柠檬采纳,获得10
11秒前
SciGPT应助蛰伏的小宇宙采纳,获得10
12秒前
syj完成签到,获得积分10
13秒前
13秒前
Doct发布了新的文献求助10
15秒前
16秒前
17秒前
天天完成签到,获得积分10
18秒前
要笑完成签到,获得积分10
18秒前
小猫多鱼完成签到,获得积分10
18秒前
18秒前
小馒完成签到 ,获得积分10
19秒前
Su73发布了新的文献求助10
19秒前
20秒前
ChuanjiWu完成签到,获得积分10
20秒前
YANA完成签到,获得积分10
21秒前
22秒前
Liu发布了新的文献求助10
23秒前
24秒前
25秒前
25秒前
25秒前
科研废物完成签到,获得积分10
28秒前
29秒前
wwww完成签到,获得积分10
30秒前
夏来应助陌路孤星采纳,获得10
30秒前
30秒前
张子翀完成签到,获得积分10
30秒前
31秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980027
求助须知:如何正确求助?哪些是违规求助? 3524131
关于积分的说明 11219994
捐赠科研通 3261576
什么是DOI,文献DOI怎么找? 1800726
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232