A review on chemometric techniques with infrared, Raman and laser-induced breakdown spectroscopy for sorting plastic waste in the recycling industry

化学计量学 激光诱导击穿光谱 主成分分析 线性判别分析 分类 工艺工程 人工智能 Boosting(机器学习) 塑料废料 机器学习 计算机科学 光谱学 环境科学 材料科学 模式识别(心理学) 生化工程 废物管理 工程类 算法 量子力学 物理
作者
Edward Ren Kai Neo,Zhiquan Yeo,Jonathan Sze Choong Low,Vannessa Goodship,Kurt Debattista
出处
期刊:Resources Conservation and Recycling [Elsevier BV]
卷期号:180: 106217-106217 被引量:115
标识
DOI:10.1016/j.resconrec.2022.106217
摘要

Mismanagement of plastic waste globally has resulted in a multitude of environmental issues, which could be tackled by boosting plastic recycling rates. Chemometrics has emerged as a useful tool for boosting plastic recycling rates by automating the plastic sorting and recycling process. This paper will comprehensively review the recent works applying chemometric methods to plastic waste sorting. The review begins by introducing spectroscopic methods and chemometric tools that are commonly used in the plastic chemometrics literature. The spectroscopic methods include near-infrared spectroscopy (NIR), mid-infrared spectroscopy (MIR), Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS). The chemometric tools include principal component analysis (PCA), linear discriminant analysis (LDA), partial least square (PLS), k-nearest neighbors (k-NN), support vector machines (SVM), random forests (RF), artificial neural networks (ANNs), convolutional neural networks (CNNs) and K-means clustering. This review revealed four main findings. (1) The scope of plastic waste should be expanded in terms of types, contamination and degradation level to mirror the heterogeneous plastic waste received at recycling plants towards understanding potential application in the recycling industry. (2) The use of hybrid spectroscopic method could potentially overcome the limitations of each spectroscopic methods. (3) Develop an open-sourced standardized database of plastic waste spectra would help to further expand the field. (4) There is limited use of more novel machine learning tools such as deep learning for plastic sorting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
敬老院N号应助changfox采纳,获得200
2秒前
lily336699发布了新的文献求助10
2秒前
3秒前
刘子豪完成签到,获得积分20
3秒前
blue完成签到 ,获得积分10
4秒前
5秒前
phobeeee完成签到 ,获得积分10
6秒前
机智双双完成签到,获得积分10
6秒前
动漫大师发布了新的文献求助30
6秒前
zhangxia完成签到,获得积分10
6秒前
8秒前
8秒前
supercan发布了新的文献求助10
9秒前
小趴蔡完成签到 ,获得积分10
10秒前
aXiong发布了新的文献求助10
10秒前
爱尚完成签到,获得积分10
12秒前
12秒前
挖掘机完成签到,获得积分10
12秒前
期刊完成签到,获得积分10
13秒前
无限毛豆发布了新的文献求助10
13秒前
怜梦完成签到,获得积分10
13秒前
14秒前
14秒前
NexusExplorer应助lily336699采纳,获得10
14秒前
supercan完成签到,获得积分10
15秒前
15秒前
15秒前
天天完成签到 ,获得积分10
17秒前
LILI发布了新的文献求助10
18秒前
研友_VZG7GZ应助天天向上采纳,获得10
19秒前
aXiong完成签到,获得积分10
20秒前
20秒前
chen发布了新的文献求助10
21秒前
小透明应助奋斗的雅柔采纳,获得30
21秒前
上官若男应助奋斗的雅柔采纳,获得10
21秒前
努力小狗发布了新的文献求助10
23秒前
大模型应助斯文黎云采纳,获得10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3651889
求助须知:如何正确求助?哪些是违规求助? 3216125
关于积分的说明 9710674
捐赠科研通 2923856
什么是DOI,文献DOI怎么找? 1601421
邀请新用户注册赠送积分活动 754137
科研通“疑难数据库(出版商)”最低求助积分说明 732974