铁电性
材料科学
图层(电子)
自行车
电场
电极
光电子学
温度循环
动力循环
可靠性(半导体)
纳米技术
电介质
功率(物理)
气象学
考古
物理化学
化学
热的
物理
历史
量子力学
作者
Fan Zhang,Zheng‐Dong Luo,Qingxiang Yang,Jiuren Zhou,Jin Wang,Zhaohao Zhang,Qikui Fan,Yue Peng,Zhenhua Wu,Fei Liu,Shiyou Chen,Dongsheng He,Huaxiang Yin,Genquan Han,Yan Liu,Yue Hao
标识
DOI:10.1021/acsami.1c22426
摘要
Doped HfO2 thin films, which exhibit robust ferroelectricity even with aggressive thickness scaling, could potentially enable ultralow-power logic and memory devices. The ferroelectric properties of such materials are strongly intertwined with the voltage-cycling-induced electrical and structural changes, leading to wake-up and fatigue effects. Such field-cycling-dependent behaviors are crucial to evaluate the reliability of HfO2-based functional devices; however, its genuine nature remains elusive. Herein, we demonstrate the coupling mechanism between the dynamic change of the interfacial layer and wake-up/fatigue phenomena in ferroelectric Hf1-xZrxO2 (HZO) thin films. Comprehensive atomic-resolution microscopy studies have revealed that the interfacial layer between the HZO and neighboring nonoxide electrode experienced a thickness/composition evolution during electrical cycling. Two theoretical models associated with the depolarization field are adopted, giving consistent results with the thickening of the interfacial layer during electrical cycling. Furthermore, we found that the electrical properties of the HZO devices can be manipulated by controlling the interface properties, e.g., through the choice of electrode match and hybrid cycling process. Our results unambiguously reveal the relationship between the interfacial layer and field-cycling behaviors in HZO, which would further permit the reliability improvement in HZO-based ferroelectric devices through interface engineering.
科研通智能强力驱动
Strongly Powered by AbleSci AI