生物
18S核糖体RNA
泰勒虫
基因型
巴贝虫
病毒学
实时聚合酶链反应
分子生物学
23S核糖体RNA
复式(建筑)
聚合酶链反应
核糖体RNA
基因
寄生虫寄主
遗传学
核糖核酸
万维网
计算机科学
DNA
核糖体
作者
Kewei Chen,Zhe Hu,Guangpu Yang,Wei Guo,Ting Qi,Diqiu Liu,Yaoxin Wang,Cheng Du,Xiaojun Wang
摘要
Equine Piroplasmosis (EP) is a tick-borne disease caused by three apicomplexan protozoan parasites, Theileria equi (T. equi), Babesia caballi (B. caballi) and T. haneyi, which can cause similar clinical symptoms. There are five known 18S rRNA genotypes of T. equi group (including T. haneyi) and three of B. caballi. Real-time PCR methods for detecting EP based on 18S rRNA analysis have been developed, but these methods cannot detect all genotypes of EP in China, especially genotype A of T. equi. In this study, a duplex real-time PCR detection method was developed for the simultaneous detection and differentiation of T. equi and B. caballi. The primers and probes for this duplex real-time PCR assay were designed based on the conserved 18S rRNA gene sequences of all genotypes of T. equi and B. caballi including Chinese strain. Double-quenched probes were used in this method, which provide less background and more signal to decrease the number of false positives relative to single-quenched probes. The newly developed real-time PCR assays exhibited good specificity, sensitivity, repeatability and reproducibility. The real-time PCR assays were further validated by comparison with a nested PCR assay and a previous developed real-time PCR for EP and sequencing results in the analysis of 506 clinical samples collected from 2019 to 2020 in eleven provinces and regions of China. Based on clinical performance, the agreements between the duplex real-time PCR assay and the nPCR assay or the previous developed real-time PCR assay were 92.5% (T. equi) and 99.4% (B. caballi) or 87.4% (T. equi) and 97.2% (B. caballi). The detection results showed that the positivity rate of T. equi was 43.87% (222/506) (10 genotype A, 1 genotype B, 4 genotype C, 207 genotype E), while that of B. caballi was 5.10% (26/506) (26 genotype A), and the rate of T. equi and B. caballi co-infection was 2.40% (12/506). The established method could contribute to the accurate diagnosis, pathogenic surveillance and epidemiological investigation of T. equi and B. caballi infections in horses.
科研通智能强力驱动
Strongly Powered by AbleSci AI