(Invited) In-Situ Investigation of the Role of Boric Acid during the Electrodeposition of Cobalt

硼酸 电镀(地质) 无机化学 化学 材料科学 冶金 有机化学 地球物理学 地质学
作者
Mallory A. Miller,Jessica Wall,John Sukamto,Eric G. Webb
出处
期刊:Meeting abstracts 卷期号:MA2019-01 (18): 1052-1052 被引量:1
标识
DOI:10.1149/ma2019-01/18/1052
摘要

As interconnect dimensions continue to decrease, copper damascene faces significant challenges 1 . As a result, alternative metals such as cobalt are actively being explored. Because the standard reduction potential for cobalt is more cathodic than that of hydrogen evolution, the solution pH is a critical consideration for the plating process. Boric acid is a common component in plating solutions used for cobalt electrodeposition. It is believed that boric acid acts as a buffering agent that helps to stabilize bath pH and to prevent formation of cobalt hydroxide precipitate on the substrate 2-4 . Typically, maximum buffering occurs when the pH equals the pK a for the weak acid. Thus, it is not well understood how an additive such as boric acid, with a pK a value of 9.27 5 , can act as a buffer in typical cobalt electroplating baths 6-9 which often have pH ranges of 2-5. The aim of this work is to provide an improved understanding of the role of boric acid on the electrodeposition of cobalt. It is important to first determine the effects of boric acid on surface pH during cobalt deposition. We present a technique for in-situ monitoring of surface pH as a function of applied plating current density. This is done using a tungsten microelectrode which can function as an indicator electrode for the hydrogen ion activity 10-12 . Results for plating cobalt from a virgin makeup solution (VMS) will be compared to those containing boric acid to demonstrate that this additive acts as a buffer at the electrode surface where pH values drastically increase during metal deposition. Electrochemical impedance spectroscopy (EIS) data will aid in understanding the surface adsorption behavior as well as the coulombic plating efficiency. In addition to surface specific information, potentiometric titration data will be presented to explain buffering effects in the bulk electrolyte. References R. Akolkar, "Current Status and Advances in Damascene Electrodeposition," Encyclopedia of Interfacial Chemistry, pp. 24-31, 2018. N. Zech and D. Landolt, "The influence of boric acid and sulfate ions on the hydrogen formation in Ni-Fe plating electrolytes," Electrochimica Acta, vol. 45, no. 21, pp. 3461-3471, 2000. J. P. Hoare, "On the Role of Boric Acid in the Watts Bath," Journal of The Electrochemical Society, vol. 133, no. 12, pp. 2491-2494, 1986. J. Santos, R. Matos, F. Trivinho-Strixino and E. C. Pereira, "Effect of temperature on Co electrodeposition in the presence of boric acid," Electrochimica Acta, vol. 53, pp. 644-649, 2007. D. R. Lide, CRC Handbook of Chemistry and Physics, Boca Raton, FL: CRC Press, 2005, p. 1274. M. A. Rigsby, L. J. Brogan, N. V. Doubina, Y. Liu, E. C. Opocensky, T. A. Spurlin, J. Zhou and J. D. Reid, "The Critical Role of pH Gradient Formation in Driving Superconformal Cobalt Deposition," Journal of The Electrochemical Society, vol. 166, no. 1, pp. D3167-D3174, 2019. Y. Hu and Q. Huang, "Effects of Dimethylglyoxime and Cyclohexane Dioxime on the Electrochemical Nucleation and Growth of Cobalt," Journal of The Electrochemical Society, vol. 166, no. 1, pp. D3175-D3181, 2019. C. H. Lee, J. E. Bonevich, J. E. Davies and T. P. Moffat, "Superconformal Electrodeposition of Co and Co–Fe Alloys Using 2-Mercapto-5-benzimidazolesulfonic Acid," Journal of The Electrochemical Society, vol. 156, no. 8, pp. D301-D309, 2009. D. Josell, M. Silva and T. Moffat, "Superconformal Bottom-Up Cobalt Deposition in High Aspect Ratio Through Silicon Vias," ECS Transactions, vol. 75, no. 2, pp. 25-30, 2016. S. E. S. E. Wakkad, H. A. Rizk and I. G. Ebaid, "The Electrochemical Behavior of the Tungsten Electrode and the Nature of the Different Oxides of the Metal," The Journal of Physical Chemistry, vol. 59, no. 10, pp. 1004-1008, 1955. J. O. Park, C.-H. Paik and H. C. Alkire, "Scanning Microsensors for Measurement of Local pH Distributions at the Microscale," Journal of The Electrochemical Society, vol. 8, no. 143, p. 174, 1996. E. Webb and R. Alkire, "Pit Initiation at Single Sulfide Inclusions in Stainless Steel," Journal of The Electrochemical Society, vol. 146, no. 6, p. B280, 2002.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Peyton Why发布了新的文献求助10
2秒前
3秒前
星辰大海应助cc采纳,获得10
3秒前
half-ora发布了新的文献求助10
9秒前
Peyton Why完成签到,获得积分10
9秒前
11秒前
11秒前
12秒前
affff完成签到 ,获得积分10
15秒前
九月发布了新的文献求助10
16秒前
华仔应助现代水蓉采纳,获得10
16秒前
青云天发布了新的文献求助10
16秒前
16秒前
Moislad发布了新的文献求助10
16秒前
18秒前
18秒前
聪慧的乐驹完成签到,获得积分10
19秒前
高高完成签到,获得积分10
19秒前
共享精神应助老阳采纳,获得10
20秒前
fwl完成签到 ,获得积分10
20秒前
狗宅完成签到 ,获得积分10
21秒前
求求发布了新的文献求助10
21秒前
Hurricane完成签到,获得积分10
21秒前
22秒前
CipherSage应助heyheybaby采纳,获得10
23秒前
吴路发布了新的文献求助10
23秒前
24秒前
25秒前
27秒前
JQKing发布了新的文献求助10
28秒前
29秒前
现代水蓉发布了新的文献求助10
31秒前
Qianbaor68应助三石采纳,获得10
31秒前
老阳发布了新的文献求助10
31秒前
Orange应助禾沐采纳,获得10
32秒前
狮子座发布了新的文献求助10
32秒前
科研通AI5应助快乐风松采纳,获得50
34秒前
36秒前
爱听歌的孤容完成签到 ,获得积分10
37秒前
飞一般的亮哥完成签到,获得积分10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738671
求助须知:如何正确求助?哪些是违规求助? 3282034
关于积分的说明 10027439
捐赠科研通 2998763
什么是DOI,文献DOI怎么找? 1645559
邀请新用户注册赠送积分活动 782819
科研通“疑难数据库(出版商)”最低求助积分说明 749975