Hybrid optimization approach using evolutionary neural network & genetic algorithm in a real-world waterflood development

数学优化 水准点(测量) 遗传算法 趋同(经济学) 多目标优化 人工神经网络 人口 油田 计算机科学 工程类 算法 数学 人工智能 石油工程 社会学 人口学 经济 经济增长 地理 大地测量学
作者
Mohammed Y. Al-Aghbari,Ashish M. Gujarathi
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier BV]
卷期号:216: 110813-110813 被引量:14
标识
DOI:10.1016/j.petrol.2022.110813
摘要

The hybrid optimization method of using evolutionary neural network (EvoNN) and NSGA-II algorithms is applied in two case studies. The first optimization study is applied in a benchmark model of the Brugge field consisting of 20 oil producers and 10 water injectors. The two objective functions are defined as maximizing short-term net present value (NPVS) and maximizing long-term NPV (NPVL). The second study is applied to a sector model of a Middle Eastern oil field developed by waterflooding to maximize cumulative oil production and minimize cumulative water production. The real field sector model consists of four producers and three injectors and it is run for ten years with 20 time steps. Bottom-hole pressure (BHP) for producers and water injection rates (qwi) for injectors are the decision variables used in the two studies. EvoNN data-driven model is based on the predator-prey genetic algorithm used in the training and optimization of the data. The optimization results obtained by the EvoNN algorithm are then used as guiding input in the NSGA-II optimization to re-initialize the population. Overall, the Pareto optimal solution obtained by the EvoNN guided NSGA-II has a more optimal solution with better convergence and diversity compared to the NSGA-II solution. The hybrid approach of using EvoNN guided NSGA-II resulted in a 70% improvement in the convergence and the computation demand for the Brugge field model. For the real field sector model, EvoNN guided NSGA-II algorithm resulted in a better convergence obtained at all generations compared to the NSGA-II algorithm solution. The maximum total oil production determined by EvoNN guided NSGA-II is 550.6 Mm3 compared to 522 Mm3 by NSGA-II. Water oil ratio (WOR) is reduced with lower water production obtained by the EvoNN guided NSGA-II algorithm compared to the NSGA-II algorithm. The best optimal solution from the EvoNN guided NSGA-II optimization for the real field sector is determined by the net flow method (NFM) at 521.25 Mm3 oil and 5208.6 Mm3water. The Pareto optimal solutions obtained by the EvoNN guided NSGA-II algorithm provide multiple optimum solutions for the decision-maker to manage the production and injection of the wells in the waterflood development based on the requirements and operational conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hxido完成签到 ,获得积分20
刚刚
三叶草完成签到,获得积分10
刚刚
chaos完成签到 ,获得积分10
1秒前
小雨完成签到,获得积分10
1秒前
1秒前
qwer完成签到 ,获得积分10
1秒前
细心故事完成签到,获得积分10
2秒前
李大侠完成签到,获得积分10
2秒前
3秒前
韶芸遥完成签到,获得积分10
4秒前
方大发布了新的文献求助10
4秒前
zaiyi完成签到 ,获得积分10
4秒前
5秒前
Z1完成签到,获得积分10
5秒前
小章完成签到,获得积分10
5秒前
知行合一发布了新的文献求助10
5秒前
123完成签到,获得积分10
5秒前
大强完成签到,获得积分10
5秒前
6秒前
6秒前
yongziwu完成签到,获得积分10
6秒前
hkh发布了新的文献求助10
7秒前
LYSM应助虚心的芹采纳,获得10
8秒前
ljw完成签到,获得积分10
8秒前
冬冬完成签到,获得积分10
8秒前
豪的花花完成签到,获得积分10
8秒前
渤海少年发布了新的文献求助10
9秒前
Cakeat发布了新的文献求助10
9秒前
wuda完成签到,获得积分10
9秒前
任性的思远完成签到 ,获得积分10
9秒前
Sera完成签到,获得积分10
10秒前
Pengcheng完成签到,获得积分10
11秒前
11秒前
萌萌许完成签到,获得积分10
11秒前
Hh发布了新的文献求助10
12秒前
努恩完成签到,获得积分10
13秒前
糖糖糖唐完成签到,获得积分10
13秒前
13秒前
ilmiss发布了新的文献求助10
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495367
关于积分的说明 11076612
捐赠科研通 3225910
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867609
科研通“疑难数据库(出版商)”最低求助积分说明 800855