A comparison study on single metal atoms (Fe, Co, Ni) within nitrogen-doped graphene for oxygen electrocatalysis and rechargeable Zn-air batteries

催化作用 电催化剂 双功能 石墨烯 过渡金属 碳纤维 氮气 析氧 氧气 金属 材料科学 无机化学 化学 化学工程 纳米技术 电化学 电极 物理化学 冶金 复合数 有机化学 复合材料 工程类
作者
Shuai Xie,Hongchang Jin,Chao Wang,Huanyu Xie,Ying‐Rui Lu,Ting‐Shan Chan,Wensheng Yan,Song Jin,Hengxing Ji
出处
期刊:Chinese Chemical Letters [Elsevier]
卷期号:34 (6): 107681-107681 被引量:16
标识
DOI:10.1016/j.cclet.2022.07.024
摘要

Single atom catalysts (SACs) with atomically dispersed transition metals on nitrogen-doped carbon supports have recently emerged as highly active non-noble metal electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), showing great application potential in Zn-air batteries. However, because of the complex structure-performance relationships of carbon-based SACs in the oxygen electrocatalytic reactions, the contribution of different metal atoms to the catalytic activity of SACs in Zn-air batteries still remains ambiguous. In this study, SACs with atomically dispersed transition metals on nitrogen-doped graphene sheets ([email protected], M = Co, Fe and Ni), featured with similar physicochemical properties and [email protected] configurations, are obtained. By comparing the on-set potentials and the maximum current, we observed that the ORR activity is in the order of [email protected]G > [email protected]G > [email protected], while the OER activity is in the order of [email protected]G > [email protected]G > [email protected] The Zn-air batteries with [email protected] as the air cathode catalysts outperform those with the [email protected] and [email protected] This is due to the accelerated charge transfer between [email protected] active sites and the oxygen-containing reactants. This study could improve our understanding of the design of more efficient bifunctional electrocatalysts for Zn-air batteries at the atomic level.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助@@@采纳,获得10
刚刚
paipai完成签到 ,获得积分10
刚刚
1秒前
滟滟完成签到,获得积分10
1秒前
Wjc完成签到,获得积分20
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
脑洞疼应助lunhui6453采纳,获得10
3秒前
小黄完成签到 ,获得积分10
5秒前
mochi发布了新的文献求助10
5秒前
TWOTP完成签到,获得积分10
5秒前
QDF发布了新的文献求助10
5秒前
丘比特应助在南方看北方采纳,获得10
5秒前
6秒前
6秒前
DryDry完成签到,获得积分10
8秒前
崔小乐给崔小乐的求助进行了留言
8秒前
8秒前
8秒前
别理我完成签到,获得积分20
9秒前
暮霭沉沉应助鱿鱼采纳,获得50
9秒前
Kelly完成签到,获得积分10
9秒前
yuon完成签到,获得积分10
9秒前
10秒前
10秒前
伞下铭发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
欣xin完成签到,获得积分20
13秒前
螃蟹完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
@@@发布了新的文献求助10
14秒前
撒旦撒完成签到,获得积分10
14秒前
14秒前
打打应助江林林采纳,获得10
15秒前
15秒前
vicky完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666801
求助须知:如何正确求助?哪些是违规求助? 4883139
关于积分的说明 15118110
捐赠科研通 4825764
什么是DOI,文献DOI怎么找? 2583569
邀请新用户注册赠送积分活动 1537746
关于科研通互助平台的介绍 1495952