A Machine-Learning Approach for the Reconstruction of Ground-Shaking Fields in Real Time

震级(天文学) 计算机科学 算法 噪音(视频) 领域(数学) 卷积神经网络 数据挖掘 人工智能 数学 天文 图像(数学) 物理 纯数学
作者
Simone Francesco Fornasari,Veronica Pazzi,Giovanni Costa
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society]
卷期号:112 (5): 2642-2652 被引量:6
标识
DOI:10.1785/0120220034
摘要

ABSTRACT Real-time seismic monitoring is of primary importance for rapid and targeted emergency operations after potentially destructive earthquakes. A key aspect in determining the impact of an earthquake is the reconstruction of the ground-shaking field, usually expressed as the ground-motion parameter. Traditional algorithms compute the ground-shaking field from the punctual data at the stations relying on ground-motion prediction equations computed on estimates of the earthquake location and magnitude when the instrumental data are missing. The results of such algorithms are then subordinate to the evaluation of location and magnitude, which can take several minutes. To fill the temporal gap between the arrival of the data and the estimate of these parameters, a new data-driven algorithm that exploits the information from the station data only is introduced. This algorithm, consisting of an ensemble of convolutional neural networks (CNNs) trained on a database of ground-shaking maps produced with traditional algorithms, can provide estimates of the ground-shaking maps and their associated uncertainties in real time. Because CNNs cannot handle sparse data, a Voronoi tessellation of a selected peak ground parameter recorded at the stations is computed and used as the input to the CNNs; site effects and network geometry are accounted for using a (normalized) VS30 map and a station location map, respectively. The developed method is robust to noise, can handle network geometry changes over time without the need for retraining, and can resolve multiple simultaneous events. Although having a lower resolution, the results obtained are statistically compatible with the ones from traditional methods. A fully operational version of the algorithm is running on the servers at the Department of Mathematics and Geosciences of the University of Trieste, showing real-time capabilities in handling stations from multiple Italian strong-motion networks and outputting results with a resolution of 0.05° × 0.05°.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kkyantong完成签到,获得积分10
1秒前
4秒前
dididi完成签到 ,获得积分10
5秒前
重要的金毛完成签到,获得积分10
5秒前
祯果粒完成签到,获得积分10
6秒前
6秒前
6秒前
薛妖怪完成签到,获得积分10
7秒前
8秒前
LIN发布了新的文献求助10
9秒前
史塔克完成签到,获得积分10
10秒前
小梦发布了新的文献求助10
10秒前
fufu完成签到 ,获得积分10
10秒前
可咳咳咳完成签到,获得积分10
10秒前
史塔克发布了新的文献求助10
12秒前
Rolandiss关注了科研通微信公众号
12秒前
13秒前
香蕉觅云应助阿乐采纳,获得10
14秒前
王一g完成签到,获得积分10
15秒前
15秒前
都是发布了新的文献求助10
18秒前
赘婿应助GDL采纳,获得10
19秒前
无为完成签到,获得积分10
22秒前
22秒前
22秒前
23秒前
23秒前
25秒前
桐桐应助重要的金毛采纳,获得10
25秒前
传奇3应助mm采纳,获得10
27秒前
优雅山柏发布了新的文献求助10
27秒前
vv发布了新的文献求助10
27秒前
vv发布了新的文献求助10
27秒前
wxy24678发布了新的文献求助30
29秒前
小呵完成签到 ,获得积分10
32秒前
benyu完成签到,获得积分10
33秒前
FashionBoy应助高高采纳,获得10
35秒前
甜美的成败完成签到,获得积分10
36秒前
37秒前
CCC完成签到,获得积分10
39秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789630
关于积分的说明 7791721
捐赠科研通 2445972
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079