Support vector machine regression to predict gas diffusion coefficient of biochar-amended soil

生物炭 线性回归 多元统计 含水量 支持向量机 多孔性 土壤科学 扩散 特征选择 回归分析 决定系数 数学 统计 计算机科学 环境科学 材料科学 机器学习 化学 热力学 工程类 岩土工程 复合材料 物理 有机化学 热解
作者
Chikezie Chimere Onyekwena,Qiang Xue,Qi Li,Yong Wan,Song Feng,Happiness Ijeoma Umeobi,Hongwei Liu,Bowen Chen
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:127: 109345-109345 被引量:11
标识
DOI:10.1016/j.asoc.2022.109345
摘要

Measurement of gas diffusion coefficient (Dp) of biochar-amended soil (BAS) under varying conditions is essential for assessing the adsorption capacity and water/gas diffusion in compacted BAS. However, there is no established equation of Dp available on this topic. Also, the factors influencing gas diffusion in BAS have not been properly studied and remain unclear. Various machine learning models were employed in this paper to learn and predict the Dp of BAS based on experimental data. Six factors (i.e., degree of compaction (DOC), biochar content (BC), soil air content (SAC), gravimetric water content (GWC), degree of saturation (DS), and porosity) are considered for testing the prediction models. The epsilon radial basis function support vector regression model showed better accuracy and predictive performance (R=0.9925) than other models and was further improved by applying the feature selection technique using the multiple linear regression and tree-based models (R=0.9937). The results reveal that SAC, DS, and porosity are the main predictor variables. The SAC proved to be the most influential predictor variable based on the estimated p-value. Furthermore, the optimal Dp was established for the various DOC and BC, which could be useful in designing engineered landfill covers. The accurate model prediction and relative importance of the predictor variables could significantly minimize the experimental work volume required to determine Dp, thereby saving time and cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fei完成签到,获得积分10
刚刚
Emma应助科研通管家采纳,获得10
刚刚
肖肖肖完成签到 ,获得积分10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
刚刚
JamesPei应助科研張采纳,获得30
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
呆橘完成签到 ,获得积分10
刚刚
起朱楼应助科研通管家采纳,获得10
刚刚
你好世界完成签到,获得积分10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
ED应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
忧心的硬币应助liangha16采纳,获得50
1秒前
顾矜应助霸气的初阳采纳,获得10
2秒前
美丽的安发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
感动的愚志关注了科研通微信公众号
4秒前
4秒前
aiyowei发布了新的文献求助10
4秒前
5秒前
coesite发布了新的文献求助10
6秒前
6秒前
小王同志完成签到,获得积分10
6秒前
丘比特应助上善若水采纳,获得10
6秒前
默默的素阴完成签到 ,获得积分10
6秒前
6秒前
Ava应助舌尖上的足疗采纳,获得30
7秒前
楚江南发布了新的文献求助20
8秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958299
求助须知:如何正确求助?哪些是违规求助? 3504528
关于积分的说明 11118735
捐赠科研通 3235777
什么是DOI,文献DOI怎么找? 1788506
邀请新用户注册赠送积分活动 871225
科研通“疑难数据库(出版商)”最低求助积分说明 802600