已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Support vector machine regression to predict gas diffusion coefficient of biochar-amended soil

生物炭 线性回归 多元统计 含水量 支持向量机 多孔性 土壤科学 扩散 特征选择 回归分析 决定系数 数学 统计 计算机科学 环境科学 材料科学 机器学习 化学 热力学 工程类 岩土工程 复合材料 物理 有机化学 热解
作者
Chikezie Chimere Onyekwena,Qiang Xue,Qi Li,Yong Wan,Song Feng,Happiness Ijeoma Umeobi,Hongwei Liu,Bowen Chen
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:127: 109345-109345 被引量:11
标识
DOI:10.1016/j.asoc.2022.109345
摘要

Measurement of gas diffusion coefficient (Dp) of biochar-amended soil (BAS) under varying conditions is essential for assessing the adsorption capacity and water/gas diffusion in compacted BAS. However, there is no established equation of Dp available on this topic. Also, the factors influencing gas diffusion in BAS have not been properly studied and remain unclear. Various machine learning models were employed in this paper to learn and predict the Dp of BAS based on experimental data. Six factors (i.e., degree of compaction (DOC), biochar content (BC), soil air content (SAC), gravimetric water content (GWC), degree of saturation (DS), and porosity) are considered for testing the prediction models. The epsilon radial basis function support vector regression model showed better accuracy and predictive performance (R=0.9925) than other models and was further improved by applying the feature selection technique using the multiple linear regression and tree-based models (R=0.9937). The results reveal that SAC, DS, and porosity are the main predictor variables. The SAC proved to be the most influential predictor variable based on the estimated p-value. Furthermore, the optimal Dp was established for the various DOC and BC, which could be useful in designing engineered landfill covers. The accurate model prediction and relative importance of the predictor variables could significantly minimize the experimental work volume required to determine Dp, thereby saving time and cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
H语完成签到,获得积分10
刚刚
大模型应助过往之猪采纳,获得10
刚刚
VDC发布了新的文献求助10
1秒前
1秒前
韭菜何子发布了新的文献求助10
3秒前
11秒前
小猪干脆面完成签到 ,获得积分10
13秒前
初次完成签到 ,获得积分10
13秒前
Getlogger发布了新的文献求助10
17秒前
18秒前
hu发布了新的文献求助10
19秒前
太渊发布了新的文献求助10
19秒前
冷酷的寒烟完成签到 ,获得积分10
20秒前
Q22应助刘学采纳,获得10
20秒前
20秒前
20秒前
科研通AI2S应助Po采纳,获得10
22秒前
23秒前
24秒前
丁丁发布了新的文献求助10
24秒前
Tumbleweed668发布了新的文献求助30
26秒前
万能图书馆应助日常没电采纳,获得10
26秒前
luvr1完成签到 ,获得积分10
26秒前
VDC发布了新的文献求助10
29秒前
30秒前
31秒前
32秒前
35秒前
爆米花应助科研通管家采纳,获得10
37秒前
sissiarno应助科研通管家采纳,获得200
37秒前
爱静静应助科研通管家采纳,获得10
37秒前
Lucas应助科研通管家采纳,获得10
37秒前
37秒前
07应助科研通管家采纳,获得10
37秒前
JamesPei应助科研通管家采纳,获得10
37秒前
打打应助科研通管家采纳,获得10
37秒前
杨哈哈发布了新的文献求助10
37秒前
科研通AI2S应助糊涂的冰夏采纳,获得10
37秒前
脑洞疼应助科研通管家采纳,获得10
38秒前
所所应助科研通管家采纳,获得10
38秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Insect Sounds and Communication: Physiology, Behaviour, Ecology, and Evolution (Contemporary Topics in Entomology) 650
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310871
求助须知:如何正确求助?哪些是违规求助? 2943675
关于积分的说明 8516080
捐赠科研通 2619029
什么是DOI,文献DOI怎么找? 1431797
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649751