Effect of environmental and eye-tracking information: An Artificial Neural Network-based state machine approach for human driver intention recognition

计算机科学 人工智能 人工神经网络 机器学习 特征(语言学) 眼动 活动识别 跟踪(教育) 模式识别(心理学) 心理学 教育学 哲学 语言学
作者
Ruth David,Dirk Söffker
标识
DOI:10.1109/cogsima54611.2022.9830683
摘要

Driving intention recognition is an important aspect of Advanced Driving Assistance Systems (ADAS) for giving drivers suggestions to maneuver safely. The intention recognition algorithms in ADAS are often developed using Machine Learning-based models. The model's input, such as environmental (ENV) and eye-tracking (ET) features affect the model's recognition performance. In this contribution, an Artificial Neural Network-based state machine is used for lane changing intention recognition. Three lane changing behaviors are considered, left/right lane change and lane keeping. Here, data consisting of ENV and ET information are collected using a driving simulator and eye-tracker. The aim is to investigate the effect of different feature types on the model's intention recognition performance. First, a 10-cross validation is performed to evaluate the model's performance, using only ENV and both ENV and ET features. The validation results show that the model with only ENV features performs better with respect to different metrics. Thus in the test, only ENV features are used to evaluate the performance. Accuracy values of higher than 80 % are achieved. Furthermore, the recognition performance of the model is compared with other Machine Learning models. The approach introduced outperforms other models in most metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Q11采纳,获得10
刚刚
陈平安完成签到,获得积分10
1秒前
123发布了新的文献求助10
2秒前
遥辉发布了新的文献求助20
3秒前
3秒前
haha完成签到 ,获得积分10
4秒前
闪闪青雪完成签到,获得积分10
4秒前
sirhai发布了新的文献求助30
4秒前
优雅铭完成签到,获得积分10
5秒前
别让我误会完成签到 ,获得积分10
5秒前
ZL完成签到,获得积分10
5秒前
哦吼完成签到,获得积分10
5秒前
6秒前
科研dogggg完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
9秒前
Dang1987发布了新的文献求助10
10秒前
四季刻歌发布了新的文献求助10
12秒前
大段儿发布了新的文献求助10
12秒前
华仔应助飞羽超采纳,获得10
12秒前
研友_Zr2mxZ完成签到,获得积分10
12秒前
丘比特应助zheng能量采纳,获得10
12秒前
YOLO发布了新的文献求助10
13秒前
无花果应助123采纳,获得10
13秒前
科研通AI5应助Lucky采纳,获得10
13秒前
FashionBoy应助One采纳,获得10
14秒前
上官若男应助hanleiharry1采纳,获得10
14秒前
Yaxuexi发布了新的文献求助10
14秒前
Sunny发布了新的文献求助30
15秒前
赘婿应助Jane采纳,获得10
16秒前
17秒前
17秒前
UMR完成签到,获得积分10
18秒前
liezus完成签到,获得积分10
18秒前
eatme完成签到,获得积分10
19秒前
20秒前
Yaxuexi完成签到,获得积分10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546676
求助须知:如何正确求助?哪些是违规求助? 3123726
关于积分的说明 9356475
捐赠科研通 2822353
什么是DOI,文献DOI怎么找? 1551369
邀请新用户注册赠送积分活动 723332
科研通“疑难数据库(出版商)”最低求助积分说明 713721