Annual dilated convolutional LSTM network for time charter rate forecasting

计算机科学 卷积神经网络 过度拟合 人工智能 机器学习 宪章 深度学习 循环神经网络 时间序列 滤波器(信号处理) 人工神经网络 计算机视觉 历史 考古
作者
Jixian Mo,Ruobin Gao,Jiahui Liu,Liang Du,Kum Fai Yuen
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:126: 109259-109259 被引量:12
标识
DOI:10.1016/j.asoc.2022.109259
摘要

Time charter rates must be predicted accurately to assist sensible decisions in the global, highly volatile shipping market. Time charter rates are affected by multiple factors, such as second-hand ship prices, order book, Libor interest rate, etc. However, not all factors convey predictive features to anticipate the future of time charter rates. Therefore, extracting predictive features from multiple driving time series from the shipping market is crucial for forecasting purposes. Accordingly, this paper proposes a novel convolutional recurrent neural network for time charter rates forecasting under the multi-variate phenomenon. The proposed network first extracts features from the monthly time series using a novel convolutional filter, the annual dilated filter. The annual dilated convolutional filter can extract the predictive features effectively and impose a sparse input structure to prevent overfitting. Then, a recurrent neural network learns the temporal information from the convoluted features. An extensive comparison study with many baseline models, including the persistence (Naïve I), statistical models, and the state-of-art networks, is conducted on the time charter rates of six kinds of ships. The empirical results demonstrate the proposed model’s superiority in forecasting the time charter rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助科研通管家采纳,获得30
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
liuqi6767发布了新的文献求助10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
聪慧小霜应助科研通管家采纳,获得10
刚刚
jie酱拌面应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得30
刚刚
科目三应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
聪慧小霜应助科研通管家采纳,获得20
1秒前
Hello应助舒心数据线采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
wanci应助泊林采纳,获得10
1秒前
夕诙应助XIAOWANG采纳,获得20
1秒前
1秒前
Rjy发布了新的文献求助10
1秒前
2秒前
滕侑林完成签到,获得积分10
3秒前
汉堡包应助废寝忘食采纳,获得10
4秒前
赘婿应助吕佳采纳,获得10
4秒前
将就发布了新的文献求助10
5秒前
5秒前
G1997发布了新的文献求助10
5秒前
司空豁应助Ferien采纳,获得10
5秒前
6秒前
6秒前
天天快乐应助真实的沛山采纳,获得10
6秒前
7秒前
科研通AI6应助seesun采纳,获得10
8秒前
wufel完成签到,获得积分10
8秒前
8秒前
Orange应助Kejie采纳,获得10
8秒前
XIAOWANG完成签到,获得积分10
8秒前
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559