Tailoring the properties of dense yttrium‐doped barium zirconate ceramics with nickel oxide additives by manipulation of the sintering profile

材料科学 烧结 电导率 陶瓷 钙钛矿(结构) 化学工程 晶界 氧化物 微观结构 分析化学(期刊) 冶金 化学 物理化学 色谱法 工程类
作者
Zinaida Shakel,Francisco J.A. Loureiro,Isabel Antunes,Sergey M. Mikhalev,Duncan P. Fagg
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:46 (15): 21989-22000 被引量:8
标识
DOI:10.1002/er.8389
摘要

International Journal of Energy ResearchEarly View SPECIAL ISSUE RESEARCH ARTICLE Tailoring the properties of dense yttrium-doped barium zirconate ceramics with nickel oxide additives by manipulation of the sintering profile Zinaida Shakel, Zinaida Shakel Centre for Mechanical Technology and Automation, Mechanical Engineering Department, University of Aveiro, Aveiro, PortugalSearch for more papers by this authorFrancisco J. A. Loureiro, Francisco J. A. Loureiro orcid.org/0000-0002-5050-3859 Centre for Mechanical Technology and Automation, Mechanical Engineering Department, University of Aveiro, Aveiro, PortugalSearch for more papers by this authorIsabel Antunes, Isabel Antunes Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, Aveiro, PortugalSearch for more papers by this authorSergey M. Mikhalev, Sergey M. Mikhalev Centre for Mechanical Technology and Automation, Mechanical Engineering Department, University of Aveiro, Aveiro, PortugalSearch for more papers by this authorDuncan P. Fagg, Corresponding Author Duncan P. Fagg duncan@ua.pt orcid.org/0000-0001-6287-9223 Centre for Mechanical Technology and Automation, Mechanical Engineering Department, University of Aveiro, Aveiro, Portugal Correspondence Duncan P. Fagg, Centre for Mechanical Technology and Automation, Mechanical Engineering Department, University of Aveiro, Aveiro 3810-193, Portugal. Email: duncan@ua.ptSearch for more papers by this author Zinaida Shakel, Zinaida Shakel Centre for Mechanical Technology and Automation, Mechanical Engineering Department, University of Aveiro, Aveiro, PortugalSearch for more papers by this authorFrancisco J. A. Loureiro, Francisco J. A. Loureiro orcid.org/0000-0002-5050-3859 Centre for Mechanical Technology and Automation, Mechanical Engineering Department, University of Aveiro, Aveiro, PortugalSearch for more papers by this authorIsabel Antunes, Isabel Antunes Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, Aveiro, PortugalSearch for more papers by this authorSergey M. Mikhalev, Sergey M. Mikhalev Centre for Mechanical Technology and Automation, Mechanical Engineering Department, University of Aveiro, Aveiro, PortugalSearch for more papers by this authorDuncan P. Fagg, Corresponding Author Duncan P. Fagg duncan@ua.pt orcid.org/0000-0001-6287-9223 Centre for Mechanical Technology and Automation, Mechanical Engineering Department, University of Aveiro, Aveiro, Portugal Correspondence Duncan P. Fagg, Centre for Mechanical Technology and Automation, Mechanical Engineering Department, University of Aveiro, Aveiro 3810-193, Portugal. Email: duncan@ua.ptSearch for more papers by this author First published: 16 July 2022 https://doi.org/10.1002/er.8389 Funding information: Agência Nacional de Inovação, Grant/Award Number: POCI-01-0247-FEDER-039926; Fundação para a Ciência e a Tecnologia, Grant/Award Numbers: CEECIND/02797/2020, POCI-01-0145-FEDER-032241, PTDC/CTM-CTM/2156/2020, PTDC/QUI-ELT/3681/2020, UIDB/00481/2020, UIDP/00481/2020; Fundo Regional para a Ciência e Tecnologia, Grant/Award Number: CENTRO-01-0145-FEDER-022083; European Regional Development Fund Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinked InRedditWechat Summary Liquid phase sintering (LPS), by the addition of transition metal additives, has become one of the most preferred approaches to lower the sintering temperature of yttrium-doped barium zirconate (BZY) proton-conducting ceramics. Nonetheless, this approach is known to negatively impact the bulk conductivity of the parent perovskite phase, due to the significant incorporation of the sintering additive into the bulk composition. In the current work, we study the typical proton conducting material BaZr0.8Y0.2O3−δ (BZY20), prepared by One or Two-step sintering strategies using 4 mol% NiO of sintering additive, compared against a control sample of pure BZY20. The main results demonstrate that the Two-step approach is shown to minimise Ni interreaction with the BZY material, allowing this sample to maintain a higher hydration capacity than the One-step material, as confirmed by X-ray diffraction (XRD), scanning transmission electron microscopy/energy-dispersive spectrocopy (STEM/EDS) and thermogravimetric (TG) measurements. Despite these benefits, the Two-step approach presents a diminished bulk conductivity, which was ascribed to depletions in proton mobility due to “proton trapping” effects. In addition, the specific grain boundary conductivity was revealed to be higher in the Two-step sample, as a possible result of a higher Ni accumulation in this region. Overall, this work opens an exciting new debate for further studies, in that prevention of Ni-incorporation in the bulk material, as typically suggested in current literature, may not actually be the best method to improve the conductivity of samples densified by Ni-additives and that control of potential defect associations may be the more critical method for conductivity tailoring. Open Research DATA AVAILABILITY STATEMENT The data that support the findings of this study are available from the corresponding authors upon reasonable request. Supporting Information Filename Description er8389-sup-0001-FigureS1.pdfPDF document, 427.2 KB Figure S1 Example of Rietveld refinement for the Two-step sample. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. Early ViewOnline Version of Record before inclusion in an issue RelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
CipherSage应助一一采纳,获得10
2秒前
万能图书馆应助我是三三采纳,获得10
4秒前
热闹的冬天完成签到,获得积分10
5秒前
博修发布了新的文献求助30
5秒前
an完成签到 ,获得积分10
6秒前
bofu发布了新的文献求助10
6秒前
8秒前
烟花应助qianlan采纳,获得10
9秒前
9秒前
11秒前
11秒前
bofu发布了新的文献求助10
12秒前
hjl90527发布了新的文献求助10
13秒前
姆姆发布了新的文献求助10
13秒前
wwwwwwwwww发布了新的文献求助10
16秒前
bofu发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
葱头发布了新的文献求助10
20秒前
充电宝应助泽灵采纳,获得50
22秒前
nature2号发布了新的文献求助10
22秒前
依古比古完成签到 ,获得积分10
23秒前
星辰大海应助博修采纳,获得10
23秒前
大模型应助yoga采纳,获得10
23秒前
魏一刀完成签到,获得积分20
23秒前
bofu发布了新的文献求助10
25秒前
26秒前
27秒前
落山姬完成签到,获得积分10
28秒前
28秒前
眼睛大雨筠应助cxy_2010采纳,获得30
29秒前
29秒前
彭于彦祖应助du采纳,获得20
29秒前
一一发布了新的文献求助10
30秒前
太渊完成签到 ,获得积分10
30秒前
lcf完成签到,获得积分10
31秒前
bofu发布了新的文献求助10
32秒前
康谨完成签到 ,获得积分10
32秒前
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961041
求助须知:如何正确求助?哪些是违规求助? 3507280
关于积分的说明 11135306
捐赠科研通 3239705
什么是DOI,文献DOI怎么找? 1790347
邀请新用户注册赠送积分活动 872359
科研通“疑难数据库(出版商)”最低求助积分说明 803150