超材料
声学超材料
带隙
材料科学
刚度
光电子学
声学
物理
复合材料
作者
Mourad Oudich,Nikhil Jrk Gerard,Yuanchen Deng,Jimmy Yun
出处
期刊:Cornell University - arXiv
日期:2022-07-11
标识
DOI:10.48550/arxiv.2207.05234
摘要
In solid state physics, a bandgap (BG) refers to a range of energies where no electronic states can exist. This concept was extended to classical waves, spawning the entire fields of photonic and phononic crystals where BGs are frequency (or wavelength) intervals where wave propagation is prohibited. For elastic waves, BGs were found in periodically alternating mechanical properties (i.e., stiffness and density). This gave birth to phononic crystals and later elastic metamaterials that have enabled unprecedented functionalities for a wide range of applications. Planar metamaterials were built for vibration shielding, while a myriad of works focused on integrating phononic crystals in micro-systems for filtering, waveguiding, and dynamical strain energy confinement in optomechanical systems. Furthermore, the past decade has witnessed the rise of topological insulators which lead to the creation of elastodynamic analogs of topological insulators for robust manipulation of mechanical waves. Meanwhile, additive manufacturing has enabled the realization of three-dimensional (3D) architected elastic metamaterials which extended their functionalities. This review aims to comprehensively delineate the rich physical background and the state-of-the art in elastic metamaterials and phononic crystals that possess engineered BGs for different functionalities and applications, and to provide a roadmap for future directions of these manmade materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI