硫化物
电催化剂
双金属
氧气
相(物质)
材料科学
化学
金属
硫化铁
析氧
无机化学
硫黄
物理化学
冶金
电化学
电极
有机化学
作者
Jingjing Cai,Huijun Liu,Yulin Luo,Yuqing Xiong,Lizhu Zhang,Sheng Wang,Kang Xiao,Zhao‐Qing Liu
标识
DOI:10.1016/j.jechem.2022.07.023
摘要
Single-phase bimetallic sulfides (CoFeS 2 ) with the uniform structural electron distribution and higher central energy level, affords higher intrinsic activity and faster reaction kinetics than metal sulfide heterojunctions (CoS/FeS). Bimetallic sulfides, integrating the merits of individual components, are ideal structures for efficient electrocatalysis. However, for bimetallic sulfides including metal sulfide heterojunctions (MSH) and single-phase bimetallic sulfides (SBS), it is still unclear about which one has better catalytic activity toward reversible oxygen catalysis and its difference on catalytic mechanism. In this work, we demonstrate a bimetallic sulfide electrocatalyst that could transform from metal sulfide heterojunction (CoS/FeS) to single-phase bimetallic sulfide (CoFeS 2 ) through a facile temperature control strategy. The single-phase bimetallic sulfide (CoFeS 2 ) affords high intrinsic activity, fast reaction kinetics and superior durability toward oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Density functional theory (DFT) simulations reveal that the (CoFeS 2 ) has homogeneous electron distribution of the CoFeS 2 structure, improves the central energy level of d band, and optimizes the O* and OOH* intermediate and efficiently reduces the energy barrier of the reaction rate-determining step (RDS). The assembled rechargeable zinc-air battery is more stable than the Pt/C and IrO 2 assemblies due to the excellent electrocatalytic activity and stability of CoFeS 2 /NC, suggesting that it has potential for use in practical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI