The Threat of Offensive AI to Organizations

无礼的 对手 计算机安全 背景(考古学) 计算机科学 政府(语言学) 秩(图论) 互联网隐私 运筹学 工程类 数学 语言学 生物 组合数学 哲学 古生物学
作者
Yisroel Mirsky,Ambra Demontis,Jaidip Kotak,Ram Shankar,Gelei Deng,Yang Liu,Xiangyu Zhang,Maura Pintor,Wenke Lee,Yuval Elovici,Battista Biggio
出处
期刊:Computers & Security [Elsevier]
卷期号:124: 103006-103006 被引量:3
标识
DOI:10.1016/j.cose.2022.103006
摘要

AI has provided us with the ability to automate tasks, extract information from vast amounts of data, and synthesize media that is nearly indistinguishable from the real thing. However, positive tools can also be used for negative purposes. In particular, cyber adversaries can use AI to enhance their attacks and expand their campaigns. Although offensive AI has been discussed in the past, there is a need to analyze and understand the threat in the context of organizations. For example, how does an AI-capable adversary impact the cyber kill chain? Does AI benefit the attacker more than the defender? What are the most significant AI threats facing organizations today and what will be their impact on the future? In this study, we explore the threat of offensive AI on organizations. First, we present the background and discuss how AI changes the adversary’s methods, strategies, goals, and overall attack model. Then, through a literature review, we identify 32 offensive AI capabilities which adversaries can use to enhance their attacks. Finally, through a panel survey spanning industry, government and academia, we rank the AI threats and provide insights on the adversaries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sq完成签到,获得积分10
1秒前
璐璐完成签到 ,获得积分10
2秒前
Esther发布了新的文献求助30
2秒前
Retro完成签到,获得积分10
3秒前
4秒前
思源应助xzx采纳,获得10
4秒前
4秒前
可爱的函函应助momo采纳,获得10
4秒前
Renhong应助LiuBin采纳,获得10
5秒前
habitatyu完成签到,获得积分10
6秒前
慕冬菱完成签到,获得积分10
7秒前
耿影影完成签到,获得积分20
8秒前
8秒前
8秒前
10秒前
Orange应助Tangyartie采纳,获得10
11秒前
11秒前
pluto应助慕冬菱采纳,获得10
11秒前
xkyasc发布了新的文献求助10
12秒前
坦率曼香发布了新的文献求助10
12秒前
13秒前
13秒前
Xv发布了新的文献求助20
13秒前
14秒前
15秒前
852应助大气早晨采纳,获得10
16秒前
愉快之槐发布了新的文献求助20
17秒前
17秒前
英俊的铭应助光亮曼云采纳,获得10
18秒前
18秒前
内向苡完成签到,获得积分10
18秒前
xzx发布了新的文献求助10
18秒前
吴青发布了新的文献求助30
19秒前
19秒前
19秒前
tian发布了新的文献求助10
19秒前
19秒前
19秒前
俏皮的山菡完成签到,获得积分10
20秒前
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222817
求助须知:如何正确求助?哪些是违规求助? 2871641
关于积分的说明 8176254
捐赠科研通 2538573
什么是DOI,文献DOI怎么找? 1370638
科研通“疑难数据库(出版商)”最低求助积分说明 645828
邀请新用户注册赠送积分活动 619710