清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Enhanced Feature Pyramid Network for Semantic Segmentation

计算机科学 语义鸿沟 增采样 编码器 人工智能 棱锥(几何) 特征提取 语义特征 分割 稳健性(进化) 特征(语言学) 模式识别(心理学) 计算机视觉 图像(数学) 图像检索 光学 物理 哲学 操作系统 基因 生物化学 化学 语言学
作者
Mucong Ye,Jingpeng Ouyang,Ge Chen,Jing Zhang,Xiaogang Yu
标识
DOI:10.1109/icpr48806.2021.9413224
摘要

Multi-scale feature fusion has been an effective way for improving the performance of semantic segmentation. However, current methods generally fail to consider the semantic gaps between the shallow (low-level) and deep (high-level) features and thus the fusion methods may not be optimal. In this paper, to address the issues of the semantic gap between the feature from different layers, we propose a unified framework based on the U-shape encoder-decoder architecture, named Enhanced Feature Pyramid Network (EFPN). Specifically, the semantic enhancement module (SEM), edge extraction module (EEM), and context aggregation model (CAM) are incorporated into the decoder network to improve the robustness of the multilevel features aggregation. In addition, a global fusion model (GFM), which in the encoder branch is proposed to capture more semantic information in the deep layers and effectively transmit the high-level semantic features to each layer. Extensive experiments are conducted and the results show that the proposed framework achieves the state-of-the-art results on three public datasets, namely PASCAL VOC 2012, Cityscapes, and PASCAL Context. Furthermore, we also demonstrate that the proposed method is effective for other visual tasks that require frequent fusing features and upsampling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rayjin完成签到,获得积分10
5秒前
苗苗完成签到 ,获得积分10
22秒前
KINGAZX完成签到 ,获得积分10
59秒前
59秒前
量子星尘发布了新的文献求助10
1分钟前
糟糕的翅膀完成签到,获得积分10
1分钟前
1分钟前
四氧化三铁完成签到,获得积分10
1分钟前
2分钟前
2分钟前
PeterLin完成签到,获得积分10
2分钟前
鲤鱼不言发布了新的文献求助10
2分钟前
2分钟前
虚心的飞鸟完成签到 ,获得积分10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
不安的晓灵完成签到 ,获得积分10
4分钟前
紫熊完成签到,获得积分10
4分钟前
4分钟前
Nancy0818完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
zzz发布了新的文献求助10
5分钟前
LLLKAIXINGUO发布了新的文献求助10
5分钟前
zzz完成签到,获得积分10
5分钟前
5分钟前
5分钟前
传奇3应助科研通管家采纳,获得30
5分钟前
Arctic完成签到 ,获得积分10
6分钟前
Jessica完成签到,获得积分10
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
武雨寒完成签到 ,获得积分20
6分钟前
方白秋完成签到,获得积分10
6分钟前
LLLKAIXINGUO完成签到,获得积分10
7分钟前
7分钟前
冰凌心恋完成签到,获得积分10
7分钟前
娜娜完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596614
求助须知:如何正确求助?哪些是违规求助? 4008465
关于积分的说明 12409239
捐赠科研通 3687520
什么是DOI,文献DOI怎么找? 2032461
邀请新用户注册赠送积分活动 1065692
科研通“疑难数据库(出版商)”最低求助积分说明 950996