Extracting disaster information based on Sina Weibo in China: A case study of the 2019 Typhoon Lekima

微博 台风 社会化媒体 中国 应急管理 比例(比率) 人口 地理 登陆 计算机科学 数据科学 地图学 政治学 气象学 社会学 万维网 人口学 考古 法学 热带气旋
作者
Kejie Wu,Jidong Wu,Wei Ding,Rumei Tang
出处
期刊:International journal of disaster risk reduction [Elsevier]
卷期号:60: 102304-102304 被引量:33
标识
DOI:10.1016/j.ijdrr.2021.102304
摘要

As an emerging big data source, social media data has been attracted more and more attention in the field of disaster emergency management. This study took the case of the Super Typhoon Lekima, which landed in China in 2019, to explore how the public's disaster risk perception changed during disaster response based on microblog data from Sina Weibo, commonly regarded as “Chinese Twitter”. We first analyzed characteristics of microblogs and found that microblog activities were closely related to Super Typhoon Lekima's landing process, the public could sense typhoon landfall about 72 h in advance. Second, we found that there exists a significant linear correlation between microblog counts and precipitation on a daily and provincial scale. Finally, we constructed Chinese disaster-relevant keyword sets and used Naïve Bayesian classification to calculate population-adjusted disaster score of affected-people, collapsed-house and affected-agriculture, and we found that the extracted disaster information from microblogs was corelated to real loss at provincial scale, and Weibo provide further detailed spatial distribution characteristics of Lekima's destruction. This research demonstrates that disaster information extracted form Sina Weibo could reflect the public's disaster risk perception well and have potential to serve as a data source for disaster management in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
余笙完成签到 ,获得积分10
1秒前
神勇的雅香应助科研混子采纳,获得10
1秒前
TT发布了新的文献求助10
2秒前
李顺完成签到,获得积分20
3秒前
ayin发布了新的文献求助10
3秒前
wait发布了新的文献求助10
3秒前
我是站长才怪应助xg采纳,获得10
4秒前
童话艺术佳完成签到,获得积分10
4秒前
稀罕你完成签到,获得积分10
4秒前
junzilan发布了新的文献求助10
4秒前
anny.white完成签到,获得积分10
5秒前
科研通AI5应助平常的毛豆采纳,获得10
7秒前
SciGPT应助paul采纳,获得10
10秒前
12秒前
英姑应助书生采纳,获得10
13秒前
科研钓鱼佬完成签到,获得积分10
14秒前
16秒前
petrichor应助C_Cppp采纳,获得10
16秒前
nan完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
勤恳的雨文完成签到,获得积分10
17秒前
木森ab发布了新的文献求助10
18秒前
paul完成签到,获得积分10
18秒前
小鞋完成签到,获得积分10
19秒前
开心青旋发布了新的文献求助10
19秒前
fztnh发布了新的文献求助10
19秒前
无名花生完成签到 ,获得积分10
19秒前
21秒前
22秒前
22秒前
杜若完成签到,获得积分10
22秒前
22秒前
木森ab完成签到,获得积分20
24秒前
paul发布了新的文献求助10
25秒前
26秒前
MEME发布了新的文献求助10
29秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824