过硫酸盐
激进的
电子顺磁共振
化学
核化学
无机化学
降级(电信)
X射线光电子能谱
化学工程
核磁共振
催化作用
有机化学
工程类
电信
物理
计算机科学
作者
Zhanmeng Liu,Zhimin Gao,Qin Wu
标识
DOI:10.1016/j.cej.2021.130283
摘要
Tetracycline (TC) is a typical antibiotic that is eco-toxic and easily causes bacterial resistance, and thus it is necessary to eliminate tetracycline from the water environment. In this study, an innovative TC removal approach was developed by activation of persulfate (PDS) using oxide-based materials fabricated via low-temperature co-precipitation: Zr oxide/MnFe2O4 (ZrO2/MnFe2O4). The effects of Fe/Zr molar ratio, the dose of ZrO2/MnFe2O4 and PDS, initial pH, TC concentration, co-existing anions, natural organic matter on TC degradation were investigated. Under optimal conditions (Fe/Zr = 10, PDS = 6.0 mM, ZrO2/MnFe2O4-10 = 0.20 g/L, and pH = 7.1), the TC degradation efficiency of 85.2% could be achieved after 120 min. Besides, the TC degradation efficiency was different extents inhibited by inorganic anions (H2PO4- >HCO3- > NO3- > Cl-) and organic substances (EDTA > HA). Furthermore, the results of quenching experiments, electron paramagnetic resonance (EPR) analysis, and X-ray photoelectron spectroscopy (XPS) spectra analysis demonstrated that three radicals (hydroxyl radicals (·OH), sulfate radicals (SO4·-), and superoxide radicals (O2·-)) contribute to rapid TC degradation in ZrO2/MnFe2O4-10/PDS system. Particularly, the ZrO2/MnFe2O4-10 exhibited superparamagnetic property and excellent stability, which was conducive to the effective recovery and utilization of the catalyst through the external magnetic field. Based on the degradation products determined by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS), the possible four degradation pathways of TC degradation were proposed in the ZrO2/MnFe2O4-10/PDS system. This study indicates the ZrO2/MnFe2O4 composite is an efficient and environmentally catalyst for PDS oxidation of organic pollutants.
科研通智能强力驱动
Strongly Powered by AbleSci AI