亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Neighbor-Anchoring Adversarial Graph Neural Networks

计算机科学 对抗制 鉴别器 人工智能 图形 发电机(电路理论) 自动汇总 生成语法 理论计算机科学 机器学习 功率(物理) 电信 物理 量子力学 探测器
作者
Zemin Liu,Yuan Fang,Yong Liu,Vincent W. Zheng
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:11
标识
DOI:10.1109/tkde.2021.3087970
摘要

Graph neural networks (GNNs) have witnessed widespread adoption due to their ability to learn superior representations for graph data. While GNNs exhibit strong discriminative power, they often fall short of learning the underlying node distribution for increased robustness. To deal with this, inspired by generative adversarial networks (GANs), we investigate the problem of adversarial learning on graph neural networks, and propose a novel framework named NAGNN (i.e., Neighbor-anchoring Adversarial Graph Neural Networks) for graph representation learning, which trains not only a discriminator but also a generator that compete with each other. In particular, we propose a novel neighbor-anchoring strategy, where the generator produces samples with explicit features and neighborhood structures anchored on a reference real node, so that the discriminator can perform neighborhood aggregation on the fake samples to learn superior representation. The advantage of our neighbor-anchoring strategy can be demonstrated both theoretically and empirically. Furthermore, as a by-product, our generator can synthesize realistic-looking features, enabling potential applications such as automatic content summarization. Finally, we conduct extensive experiments on four public benchmark datasets, and achieve promising results under both quantitative and qualitative evaluations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢冬莲发布了新的文献求助10
1秒前
3秒前
guyutang完成签到,获得积分10
5秒前
小马完成签到,获得积分10
5秒前
旧城发布了新的文献求助10
8秒前
10秒前
淮安石河子完成签到 ,获得积分10
14秒前
15秒前
闵凝竹完成签到 ,获得积分0
19秒前
21秒前
22秒前
轻松的飞阳完成签到,获得积分10
25秒前
27秒前
得唔闻完成签到 ,获得积分10
29秒前
充电宝应助LIAN采纳,获得10
31秒前
科目三应助孟益帆采纳,获得10
32秒前
完美的jia发布了新的文献求助10
34秒前
春风完成签到 ,获得积分10
38秒前
47秒前
无极微光应助lluu采纳,获得20
50秒前
50秒前
52秒前
53秒前
欢呼半山完成签到 ,获得积分10
53秒前
1分钟前
hll发布了新的文献求助10
1分钟前
1分钟前
1分钟前
田子廉发布了新的文献求助10
1分钟前
z123456发布了新的文献求助10
1分钟前
1分钟前
zhongbo发布了新的文献求助10
1分钟前
充电宝应助z123456采纳,获得10
1分钟前
田子廉完成签到,获得积分20
1分钟前
1分钟前
谭谭谭发布了新的文献求助80
1分钟前
1分钟前
科研通AI6应助hll采纳,获得30
1分钟前
zhongbo发布了新的文献求助10
1分钟前
孟益帆发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564848
求助须知:如何正确求助?哪些是违规求助? 4649537
关于积分的说明 14689066
捐赠科研通 4591517
什么是DOI,文献DOI怎么找? 2519183
邀请新用户注册赠送积分活动 1491843
关于科研通互助平台的介绍 1462872